Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 21,
  • pp. 7084-7094
  • (2022)

High-Speed Trains Access Connectivity Through RIS-Assisted FSO Communications

Not Accessible

Your library or personal account may give you access

Abstract

Free-space optic (FSO) is a promising solution to provide broadband Internet access for high-speed trains (HSTs). Besides, reconfigurable intelligent surfaces (RIS) are considered as hardware technology to improve the performance of optical wireless communication systems. In this paper, we propose a RIS-assisted FSO system to provide access connectivity for HTSs, as an upgrade for the existing direct and relay-assisted FSO access setups. Our motivation is mainly based on well-proven results indicating that a RIS-assisted optical wireless system, with a large enough number of RIS elements, outperforms a relay-assisted one thanks to its programmable structure. We firstly compute the statistical expressions of the considered RIS-assisted FSO channels under weak and moderate-to-strong fading conditions. Then, the network's average signal-to-noise ratio and outage probability are formulated based on the assumed fading conditions, and for two fixed- and dynamic-oriented RIS coverage scenarios. Our results reveal that the proposed access network offers up to around 63% higher data rates and 446% wider coverage area for each FSO base station (FSO-BS) compared to those of the relay-assisted one. The increase of coverage area reduces up to 98% of the number of required FSO-BSs for a given distance, which results in fewer handover processes compared to the alternative setups. Finally, the results are verified through Monte-Carlo simulations.

PDF Article
More Like This
Comprehensive study on UAV-based FSO links for high-speed train backhauling

Haitham S. Khallaf and Murat Uysal
Appl. Opt. 60(27) 8239-8247 (2021)

Performance Analysis of a Multiuser Dual-Hop Amplify-and-Forward Relay System With FSO/RF Links

Ruijie Li, Te Chen, Luhai Fan, and Anhong Dang
J. Opt. Commun. Netw. 11(7) 362-370 (2019)

Intelligent-reflecting-surfaces-assisted hybrid FSO/RF communication with diversity combining: a performance analysis

Smriti Uniyal, Narendra Vishwakarma, R. Swaminathan, and A. S. Madhukumar
Appl. Opt. 62(35) 9399-9413 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.