Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 19,
  • pp. 6319-6330
  • (2022)

Evaluation of Optical Transport Unit Line-Card Integration in Spatially and Spectrally Flexible Optical Networks in Terms of Device Cost and Network Performance

Not Accessible

Your library or personal account may give you access

Abstract

The explosive growth of internet traffic has accelerated the evolution of optical transport networks, emphasizing the need to expand transmission capacity. To overcome the limitations of conventional single-core/mode fiber-based optical transmission, spatial-division multiplexing (SDM) has been proposed. Spatial and spectral superchannel (Spa & Spe SpCh) technology in SDM-based optical networks realizes high-capacity transmission. Such an optical transmission technology can be supported by the Spa & Spe SpCh transceiver and the reconfigurable optical add/drop multiplexer (ROADM), allocating optical carriers (OCs) in spatial and spectral domains simultaneously. The architectures of the manufactured transceivers and ROADMs installed in advance at each network node are fixed. This necessitates the determination of the appropriate spatial and spectral granularity combination that affects the transceiver and ROADM designs to efficiently utilize the switching capacity and reduce the implementation costs. In this paper, we focus on the performance analysis for the $N$ -core MCF-based network deployment issues under different granularity combinations. Detailed evaluation of a 4-core MCF-based network reveals that the device cost and network performance are influenced by spatial and spectral granularities and can provide guidance for real-world network planning and design. In particular, the trade-off between device cost and network performance based on different granularities should be taken into account in network design.

PDF Article
More Like This
Survey of Photonic Switching Architectures and Technologies in Support of Spatially and Spectrally Flexible Optical Networking [Invited]

Dan M. Marom, Paul D. Colbourne, Antonio D’Errico, Nicolas K. Fontaine, Yuichiro Ikuma, Roberto Proietti, Liangjia Zong, José M. Rivas-Moscoso, and Ioannis Tomkos
J. Opt. Commun. Netw. 9(1) 1-26 (2017)

QoT-aware performance evaluation of spectrally–spatially flexible optical networks over FM-MCFs

Farhad Arpanaei, Nahid Ardalani, Hamzeh Beyranvand, and Behnam Shariati
J. Opt. Commun. Netw. 12(8) 288-300 (2020)

Evaluation of Core-Continuity-Constrained ROADMs for Flex-Grid/MCF Optical Networks

F.-J. Moreno-Muro, R. Rumipamba-Zambrano, P. Pavón-Marino, J. Perelló, J. M. Gené, and S. Spadaro
J. Opt. Commun. Netw. 9(11) 1041-1050 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.