Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 16,
  • pp. 5395-5406
  • (2022)

Automatic Optimization of Volterra Equalizer With Deep Reinforcement Learning for Intensity-Modulated Direct-Detection Optical Communications

Not Accessible

Your library or personal account may give you access

Abstract

Volterra nonlinear equalizer (VNLE) is widely investigated for linear and nonlinear distortions compensation in optical communication systems. Despite the powerful equalization ability, the required high computation complexity limits its real-time implementation on the hardware. To simplify the complexity, the structure of the VNLE needs to be well optimized. Traditionally, manual optimization of the VNLE structure is blind, and traversal search is inefficient and may result in multiple structures. Therefore, the optimal VNLE structure with the best equalization performance and the lowest equalization complexity for the same performance are still unclear. In this paper, a novel search method named AutoVolterra is proposed to efficiently find the optimal structure of VNLE by using deep reinforcement learning to learn the functional relationship between structure parameters and optimization objectives. Experimental demonstration of 50-Gb/s PAM-4 signal transmission in a bandwidth-limited intensity modulation and direct detection system is performed to verify the effectiveness of AutoVolterra. Both AutoVolterra and greedy search are applied to Volterra feedforward equalizer, Volterra decision feedback equalizer and Volterra-Pruning. The bit error ratio and equalizer's complexity results suggest that the structure searched by AutoVolterra can optimize the equalization performance, and also significantly reduce the complexity, and improve the pruning quality of VNLE to assist real-time implementation on the hardware. Besides, AutoVolterra can also provide a reliable equalization performance benchmark and complexity benchmark to help us verify the actual capabilities of other algorithms.

PDF Article
More Like This
Low-complexity Volterra-inspired neural network equalizer in 100-G band-limited IMDD PON system

Luyao Huang, Wenqing Jiang, Yongxing Xu, Weisheng Hu, and Lilin Yi
Opt. Lett. 47(21) 5692-5695 (2022)

Routing in optical transport networks with deep reinforcement learning

José Suárez-Varela, Albert Mestres, Junlin Yu, Li Kuang, Haoyu Feng, Albert Cabellos-Aparicio, and Pere Barlet-Ros
J. Opt. Commun. Netw. 11(11) 547-558 (2019)

Deep reinforcement learning for proactive spectrum defragmentation in elastic optical networks

Ehsan Etezadi, Carlos Natalino, Renzo Diaz, Anders Lindgren, Stefan Melin, Lena Wosinska, Paolo Monti, and Marija Furdek
J. Opt. Commun. Netw. 15(10) E86-E96 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.