Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 2,
  • pp. 654-659
  • (2021)

High-Performance Raman Distributed Temperature Sensing Powered by Deep Learning

Not Accessible

Your library or personal account may give you access

Abstract

Raman-based distributed temperature sensing (RDTS) can achieve temperature measurement of tens of kilometers and is widely used in temperature monitoring of crucial facilities. The accuracy of RDTS is highly determined by the signal-to-noise ratio (SNR) of the acquired spontaneous Raman scattering (SpRS) signals, which is about 60 dB weaker than the pump pulse. Therefore, the performance of single-mode fiber (SMF) based conventional RDTS is poor. To improve its performance, many methods have been proposed, including the use of special optical fibers, pulse coding techniques, and denoising algorithms. However, these methods have their limitations. Here, we propose and experimentally demonstrate a deep 1-D denoising convolutional neural network (1DDCNN) to enhance the performance of RDTS. A simplified RDTS model is built to train and optimize the 1DDCNN. To verify the performance of the 1DDCNN on actual data, we experimentally measure the SpRS data of a 10-km SMF with an average time of 1 s and a spatial resolution of 3 m. The well-trained 1DDCNN reduces the temperature uncertainty from 6.4 °C to 0.7 °C with high fidelity. As a comparison, the commonly used wavelet denoising algorithm can only reduce it to 3.7 °C. Besides, the 1DDCNN does not require manual parameter adjustment and is not affected by the sampling rate, giving it significant advantages in practical applications compared with conventional denoising algorithms. Moreover, we believe that the proposed 1DDCNN can be applied to other distributed optical fiber sensing systems by fine-tuning the network with appropriate training data.

PDF Article
More Like This
Single-ended self-calibration high-accuracy Raman distributed temperature sensing based on multi-core fiber

Haoze Du, Hao Wu, ZhongShu Zhang, Can Zhao, Zhiyong Zhao, and Ming Tang
Opt. Express 29(21) 34762-34769 (2021)

Measurement accuracy enhancement with multi-event detection using the deep learning approach in Raman distributed temperature sensors

Amitabha Datta, Vishnu Raj, Viswanathan Sankar, Sheetal Kalyani, and Balaji Srinivasan
Opt. Express 29(17) 26745-26764 (2021)

Few-mode fiber based Raman distributed temperature sensing

Meng Wang, Hao Wu, Ming Tang, Zhiyong Zhao, Yunli Dang, Can Zhao, Ruolin Liao, Wen Chen, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(5) 4907-4916 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.