Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 21,
  • pp. 5937-5948
  • (2020)

VLCnet: Deep Learning Based End-to-End Visible Light Communication System

Not Accessible

Your library or personal account may give you access

Abstract

Visible light communication is a popular research area where proposed communication methods must satisfy the lighting related requirements as well. Suggested VLC modules should not only improve communication quality such as decreasing error rates but also comply with other lighting related constraints such as sustaining certain level of illumination. This increases the complexity of the optimization problem. Moreover, most of the time the suggested modules focus on a specific block of communication system which downgrades the system-wide performance on coming together. To solve this complex problem and jointly optimize the whole system, we suggest a deep learning based method, VLCnet. Despite the increasing number of neural network based channel decoders in the literature, few of them are addressing real-life application constraints. VLCnet is an error rate decreasing solution which takes into account, reducing flicker and sustaining certain illumination level. Moreover, our channel impulse response (CIR) is taken from reference CIRs for VLC and our study considers the input-dependent noise originated by the shot noise for the sake of generality. Flicker reducing activation units (FRAU) are the key part of VLCnet and the main novelty of this publication. FRAU is an example of a competitive layer and ensures run length limitation for flicker reduction. Both with input-independent and dependent noise, simulation results show performance superiority of the proposed VLCnet method. Although they have different setups, all results demonstrate the benefit of training with certain amount of noise. From the practicality perspective, proposed system is easy to be deployed since inference operation does not have iterations unlike most of the conventional detectors.

PDF Article
More Like This
Deep learning based end-to-end visible light communication with an in-band channel modeling strategy

Zhongya Li, Jianyang Shi, Yiheng Zhao, Guoqiang Li, Jiang Chen, Junwen Zhang, and Nan Chi
Opt. Express 30(16) 28905-28921 (2022)

Binary signaling design for visible light communication: a deep learning framework

Hoon Lee, Inkyu Lee, Tony Q. S. Quek, and Sang Hyun Lee
Opt. Express 26(14) 18131-18142 (2018)

Deep learning-based detection scheme for visible light communication with generalized spatial modulation

Tengjiao Wang, Fang Yang, and Jian Song
Opt. Express 28(20) 28906-28915 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.