Abstract

Single photon detector (SPD) has a maximum count rate due to its dead time, which results in that the dynamic range of photon counting optical time-domain reflectometry (PC-OTDR) decreases with the length of monitored fiber. To further improve the dynamic range of PC-OTDR, we propose and demonstrate an externally time-gated scheme. The externally time-gated scheme is realized by using a high-speed optical switch, i.e., a Mach-Zehnder interferometer, to modulate the back-propagation optical signal, and to allow that only a certain segment of the fiber under test is monitored by the SPD. The feasibility of proposed scheme is first examined with theoretical analysis and simulation; then we experimentally demonstrate it with our experimental PC-OTDR testbed operating at 850 nm wavelength. In our studies, a dynamic range of 30.0 dB is achieved in a 70 meters long PC-OTDR system with 50 ns external gates, corresponding to an improvement of 11.0 dB in dynamic range comparing with no gating operation. Furthermore, with the improved dynamic range, a successful identification of a 0.37 dB loss event is detected with 30-seconds accumulation, which could not be identified without gating operation. Our scheme paves an avenue for developing PC-OTDR systems with high dynamic range.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription