Abstract

The use of autonomous underwater vehicles (AUVs) is highly desirable for collecting data from seafloor sensor platforms within a close range. With the recent innovations in underwater wireless optical communication (UWOC) for deep-sea exploration, UWOC could be used in conjunction with AUVs for high-speed data uploads near the surface. In addition to absorption and scattering effects, UWOC undergoes scintillation induced by temperature- and salinity-related turbulence. However, studies on scintillation have been limited to emulating channels with uniform temperature and salinity gradients, rather than incorporating the effects of turbulent motion. Such turbulent flow results in an ocean mixing process that degrades optical communication. This study presents a turbulent model for investigating the impact of vehicle-motion-induced turbulence via the turbulent kinetic energy dissipation rate. This scintillation-related parameter offers a representation of the change in the refractive index due to the turbulent flow and ocean mixing. Monte Carlo simulations are carried out to validate the impact of turbulent flow on optical scintillation. In experimental measurements, the scintillation index (SI) and signal-to-noise ratio (SNR) are similar with (SI = 0.4824; SNR = 5.56) and without (SI = 0.4823; SNR = 5.87) water mixing under uniform temperature channels. By introducing a temperature gradient of 4 °C, SI (SNR) with and without turbulent flow changed to 0.5417 (5.06) and 0.8790 (3.40), respectively. The experimental results show a similar trend to the simulation results. Thus, turbulent flow was shown to significantly impact underwater optical communications.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Brundage, “Designing a wireless underwater optical communication system,” M.S. thesis, Dept. Mech. Eng., Massachusetts Inst. Technol., Cambridge, MA, USA, 2010.
  2. C. Pontbriandet al., “Wireless data harvesting using the AUV sentry and WHOI optical modem,” in Proc. OCEANS’15 - MTS/IEEE Conf., Washington, DC, USA, 2015, pp. 1–6.
  3. J. Hansenet al., “Autonomousacoustic-aided optical localization for data transfer,” in Proc. OCEANS'15-MTS/IEEE Conf., Washington, DC, USA, 2015, pp. 1–7.
  4. H. M. Oubeiet al., “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express, vol. 23, no. 18, pp. 23302–23309, 2015.
  5. C. Shenet al., “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express, vol. 24, no. 22, pp. 25502–25509, 2016.
  6. M. Konget al., “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express, vol. 25, no. 17, pp. 20829–20834, 2017.
  7. C.-Y. Liet al., “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, 2018, Art. no. .
  8. Y. Weng, J. Guo, A. Hsiao, and S.-W. Huang, “Vehicle motion on optical communication quality in the process of underwater wireless data upload,” in Proc. OCEANS’17, Anchorage, AK, USA, 2017, pp. 1–5.
  9. S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, 2008.
  10. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.
  11. M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.
  12. W. W. Hou, “A simple underwater imaging model,” Opt. Lett., vol. 34, no. 17, pp. 2688–2690, 2009.
  13. M. V. Jamaliet al., “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.
  14. H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.
  15. H. M. Oubeiet al., “Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems,” Opt. Lett., vol. 42, no. 13, pp. 2455–2458, 2017.
  16. H. Makine Oubeiet al., “Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications,” in Proc. 12th Conf. Lasers Electro-Opt. Pac. Rim, Singapore, 2017, pp. 1–2.
  17. M. Yousefi, S. Golmohammady, A. Mashal, and F. D. Kashani, “Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence,” J. Opt. Soc. Amer. A, vol. 32, no. 11, pp. 1982–1992, 2015.
  18. X. Yi, Z. Li, and Z. Liu, “Underwater optical communication performance for laser beam propagation through weak oceanic turbulence,” Appl. Opt., vol. 54, no. 6, pp. 1273–1278, 2015.
  19. R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.
  20. T. P. Boyeret al., World Ocean Database, 2013. [Online]. Available: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
  21. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Amer. A, vol. 16, no. 6, pp. 1417–1429, 1999.
  22. V. Nikishov and V. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res., vol. 27, no. 1, pp. 82–98, 2000.
  23. W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A., vol. 8, no. 12, pp. 1052–1058, 2006.
  24. Y. Ata and Y. Baykal, “Scintillations of optical plane and spherical waves in underwater turbulence,” J. Opt. Soc. Amer. A, vol. 31, no. 7, pp. 1552–1556, 2014.
  25. W. Liu, Z. Xu, and L. Yang, “SIMO detection schemes for underwater optical wireless communication under turbulence,” Photon. Res., vol. 3, no. 3, pp. 48–53, 2015.
  26. Y. Guoet al., “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, pp. 1–9, 2019, Art. no. .
  27. H. L. Grant, R. W. Stewart, and A. Moilliet, “Turbulence spectra from a tidal channel,” J. Fluid Mech., vol. 12, no. 2, pp. 241–268, 1962.
  28. G. I. Taylor, “The spectrum of turbulence,” Proc. Roy. Soc. A, vol. 164, no. 919, pp. 476–490, 1938.
  29. A. Wüest, G. Piepke, and D. C. Van Senden, “Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters,” Limnol. Oceanogr., vol. 45, no. 6, pp. 1388–1400, 2000.
  30. A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Math Comput., vol. 22, no. 104, pp. 745–762, 1968.
  31. V. M. Canuto, A. Howard, Y. Cheng, and M. Dubovikov, “Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities,” J. Phys. Oceanogr., vol. 31, no. 6, pp. 1413–1426, 2001.
  32. T. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr., vol. 10, no. 1, pp. 83–89, 1980.
  33. L. St. Laurent and R. W. Schmitt, “The contribution of salt fingers to vertical mixing in the north Atlantic tracer release experiment,” J. Phys. Oceanogr., vol. 29, no. 7, pp. 1404–1424, 1999.
  34. R. Britter, “An experiment on turbulence in a density stratified fluid,” Ph.D. dissertation, Monash Univ., Clayton, VIC, Australia, 1974.
  35. Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

2019 (1)

Y. Guoet al., “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, pp. 1–9, 2019, Art. no. .

2018 (2)

C.-Y. Liet al., “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, 2018, Art. no. .

M. V. Jamaliet al., “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.

2017 (4)

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

H. M. Oubeiet al., “Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems,” Opt. Lett., vol. 42, no. 13, pp. 2455–2458, 2017.

M. Konget al., “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express, vol. 25, no. 17, pp. 20829–20834, 2017.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

2016 (1)

2015 (4)

2014 (1)

Y. Ata and Y. Baykal, “Scintillations of optical plane and spherical waves in underwater turbulence,” J. Opt. Soc. Amer. A, vol. 31, no. 7, pp. 1552–1556, 2014.

2013 (1)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

2009 (1)

2008 (1)

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, 2008.

2006 (1)

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A., vol. 8, no. 12, pp. 1052–1058, 2006.

2005 (1)

R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.

2001 (1)

V. M. Canuto, A. Howard, Y. Cheng, and M. Dubovikov, “Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities,” J. Phys. Oceanogr., vol. 31, no. 6, pp. 1413–1426, 2001.

2000 (2)

A. Wüest, G. Piepke, and D. C. Van Senden, “Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters,” Limnol. Oceanogr., vol. 45, no. 6, pp. 1388–1400, 2000.

V. Nikishov and V. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res., vol. 27, no. 1, pp. 82–98, 2000.

1999 (2)

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Amer. A, vol. 16, no. 6, pp. 1417–1429, 1999.

L. St. Laurent and R. W. Schmitt, “The contribution of salt fingers to vertical mixing in the north Atlantic tracer release experiment,” J. Phys. Oceanogr., vol. 29, no. 7, pp. 1404–1424, 1999.

1980 (1)

T. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr., vol. 10, no. 1, pp. 83–89, 1980.

1968 (1)

A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Math Comput., vol. 22, no. 104, pp. 745–762, 1968.

1962 (1)

H. L. Grant, R. W. Stewart, and A. Moilliet, “Turbulence spectra from a tidal channel,” J. Fluid Mech., vol. 12, no. 2, pp. 241–268, 1962.

1938 (1)

G. I. Taylor, “The spectrum of turbulence,” Proc. Roy. Soc. A, vol. 164, no. 919, pp. 476–490, 1938.

Ajam, H.

M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.

Al-Habash, M.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Amer. A, vol. 16, no. 6, pp. 1417–1429, 1999.

Alouini, M.-S.

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Amer. A, vol. 16, no. 6, pp. 1417–1429, 1999.

Ata, Y.

Y. Ata and Y. Baykal, “Scintillations of optical plane and spherical waves in underwater turbulence,” J. Opt. Soc. Amer. A, vol. 31, no. 7, pp. 1552–1556, 2014.

Baykal, Y.

Y. Ata and Y. Baykal, “Scintillations of optical plane and spherical waves in underwater turbulence,” J. Opt. Soc. Amer. A, vol. 31, no. 7, pp. 1552–1556, 2014.

Bourennane, S.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

Boyer, T. P.

T. P. Boyeret al., World Ocean Database, 2013. [Online]. Available: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html

Britter, R.

R. Britter, “An experiment on turbulence in a density stratified fluid,” Ph.D. dissertation, Monash Univ., Clayton, VIC, Australia, 1974.

Brundage, H.

H. Brundage, “Designing a wireless underwater optical communication system,” M.S. thesis, Dept. Mech. Eng., Massachusetts Inst. Technol., Cambridge, MA, USA, 2010.

Canuto, V. M.

V. M. Canuto, A. Howard, Y. Cheng, and M. Dubovikov, “Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities,” J. Phys. Oceanogr., vol. 31, no. 6, pp. 1413–1426, 2001.

Cheng, Y.

V. M. Canuto, A. Howard, Y. Cheng, and M. Dubovikov, “Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities,” J. Phys. Oceanogr., vol. 31, no. 6, pp. 1413–1426, 2001.

Chorin, A. J.

A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Math Comput., vol. 22, no. 104, pp. 745–762, 1968.

Diamantoulakis, P. D.

M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.

Dubovikov, M.

V. M. Canuto, A. Howard, Y. Cheng, and M. Dubovikov, “Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities,” J. Phys. Oceanogr., vol. 31, no. 6, pp. 1413–1426, 2001.

ElAfandy, R. T.

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Gabriel, C.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

Ghassemlooy, Z.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

Gholami, A.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

Golmohammady, S.

M. Yousefi, S. Golmohammady, A. Mashal, and F. D. Kashani, “Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence,” J. Opt. Soc. Amer. A, vol. 32, no. 11, pp. 1982–1992, 2015.

Grant, H. L.

H. L. Grant, R. W. Stewart, and A. Moilliet, “Turbulence spectra from a tidal channel,” J. Fluid Mech., vol. 12, no. 2, pp. 241–268, 1962.

Guo, J.

Y. Weng, J. Guo, A. Hsiao, and S.-W. Huang, “Vehicle motion on optical communication quality in the process of underwater wireless data upload,” in Proc. OCEANS’17, Anchorage, AK, USA, 2017, pp. 1–5.

Guo, Y.

Y. Guoet al., “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, pp. 1–9, 2019, Art. no. .

Hansen, J.

J. Hansenet al., “Autonomousacoustic-aided optical localization for data transfer,” in Proc. OCEANS'15-MTS/IEEE Conf., Washington, DC, USA, 2015, pp. 1–7.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Amer. A, vol. 16, no. 6, pp. 1417–1429, 1999.

Hou, W. W.

Howard, A.

V. M. Canuto, A. Howard, Y. Cheng, and M. Dubovikov, “Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities,” J. Phys. Oceanogr., vol. 31, no. 6, pp. 1413–1426, 2001.

Hsiao, A.

Y. Weng, J. Guo, A. Hsiao, and S.-W. Huang, “Vehicle motion on optical communication quality in the process of underwater wireless data upload,” in Proc. OCEANS’17, Anchorage, AK, USA, 2017, pp. 1–5.

Huang, S.-W.

Y. Weng, J. Guo, A. Hsiao, and S.-W. Huang, “Vehicle motion on optical communication quality in the process of underwater wireless data upload,” in Proc. OCEANS’17, Anchorage, AK, USA, 2017, pp. 1–5.

Jamali, M. V.

M. V. Jamaliet al., “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.

Jamali, V.

M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.

Jaruwatanadilok, S.

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, 2008.

Karagiannidis, G. K.

M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.

Kashani, F. D.

M. Yousefi, S. Golmohammady, A. Mashal, and F. D. Kashani, “Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence,” J. Opt. Soc. Amer. A, vol. 32, no. 11, pp. 1982–1992, 2015.

Khalighi, M. A.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

Kong, M.

Laurent, L. St.

L. St. Laurent and R. W. Schmitt, “The contribution of salt fingers to vertical mixing in the north Atlantic tracer release experiment,” J. Phys. Oceanogr., vol. 29, no. 7, pp. 1404–1424, 1999.

Ledwell, J.

R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.

Leon, P.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

Li, C.-Y.

C.-Y. Liet al., “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, 2018, Art. no. .

Li, Z.

Liu, L.

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A., vol. 8, no. 12, pp. 1052–1058, 2006.

Liu, W.

Liu, Z.

Lu, W.

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A., vol. 8, no. 12, pp. 1052–1058, 2006.

Makine Oubei, H.

H. Makine Oubeiet al., “Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications,” in Proc. 12th Conf. Lasers Electro-Opt. Pac. Rim, Singapore, 2017, pp. 1–2.

Mashal, A.

M. Yousefi, S. Golmohammady, A. Mashal, and F. D. Kashani, “Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence,” J. Opt. Soc. Amer. A, vol. 32, no. 11, pp. 1982–1992, 2015.

Michelson, D. G.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

Moilliet, A.

H. L. Grant, R. W. Stewart, and A. Moilliet, “Turbulence spectra from a tidal channel,” J. Fluid Mech., vol. 12, no. 2, pp. 241–268, 1962.

Montgomery, E.

R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.

Najafi, M.

M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.

Ng, T. K.

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Nikishov, V.

V. Nikishov and V. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res., vol. 27, no. 1, pp. 82–98, 2000.

V. Nikishov and V. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res., vol. 27, no. 1, pp. 82–98, 2000.

Noori, H.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

Omoomi, M.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

Ooi, B. S.

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Osborn, T.

T. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr., vol. 10, no. 1, pp. 83–89, 1980.

Oubei, H. M.

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

H. M. Oubeiet al., “Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems,” Opt. Lett., vol. 42, no. 13, pp. 2455–2458, 2017.

H. M. Oubeiet al., “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express, vol. 23, no. 18, pp. 23302–23309, 2015.

Park, K.-H.

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Phillips, R. L.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Amer. A, vol. 16, no. 6, pp. 1417–1429, 1999.

Piepke, G.

A. Wüest, G. Piepke, and D. C. Van Senden, “Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters,” Limnol. Oceanogr., vol. 45, no. 6, pp. 1388–1400, 2000.

Polzin, K.

R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.

Pontbriand, C.

C. Pontbriandet al., “Wireless data harvesting using the AUV sentry and WHOI optical modem,” in Proc. OCEANS’15 - MTS/IEEE Conf., Washington, DC, USA, 2015, pp. 1–6.

Rigaud, V.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

Schmitt, R. W.

R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.

L. St. Laurent and R. W. Schmitt, “The contribution of salt fingers to vertical mixing in the north Atlantic tracer release experiment,” J. Phys. Oceanogr., vol. 29, no. 7, pp. 1404–1424, 1999.

Schober, R.

M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.

Shen, C.

Stewart, R. W.

H. L. Grant, R. W. Stewart, and A. Moilliet, “Turbulence spectra from a tidal channel,” J. Fluid Mech., vol. 12, no. 2, pp. 241–268, 1962.

Sun, J.

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A., vol. 8, no. 12, pp. 1052–1058, 2006.

Taylor, G. I.

G. I. Taylor, “The spectrum of turbulence,” Proc. Roy. Soc. A, vol. 164, no. 919, pp. 476–490, 1938.

Toole, J.

R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.

Vali, Z.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

Van Senden, D. C.

A. Wüest, G. Piepke, and D. C. Van Senden, “Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters,” Limnol. Oceanogr., vol. 45, no. 6, pp. 1388–1400, 2000.

Weng, Y.

Y. Weng, J. Guo, A. Hsiao, and S.-W. Huang, “Vehicle motion on optical communication quality in the process of underwater wireless data upload,” in Proc. OCEANS’17, Anchorage, AK, USA, 2017, pp. 1–5.

Wüest, A.

A. Wüest, G. Piepke, and D. C. Van Senden, “Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters,” Limnol. Oceanogr., vol. 45, no. 6, pp. 1388–1400, 2000.

Xu, Z.

Yang, L.

Yi, X.

Yousefi, M.

M. Yousefi, S. Golmohammady, A. Mashal, and F. D. Kashani, “Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence,” J. Opt. Soc. Amer. A, vol. 32, no. 11, pp. 1982–1992, 2015.

Appl. Opt. (1)

IEEE J. Opt. Commun. Netw. (1)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

IEEE J. Sel. Areas Commun. (1)

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, 2008.

IEEE Photon. J. (3)

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

C.-Y. Liet al., “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, 2018, Art. no. .

Y. Guoet al., “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, pp. 1–9, 2019, Art. no. .

IEEE Trans. Commun. (1)

M. V. Jamaliet al., “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.

Int. J. Fluid Mech. Res. (1)

V. Nikishov and V. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res., vol. 27, no. 1, pp. 82–98, 2000.

J. Fluid Mech. (1)

H. L. Grant, R. W. Stewart, and A. Moilliet, “Turbulence spectra from a tidal channel,” J. Fluid Mech., vol. 12, no. 2, pp. 241–268, 1962.

J. Opt. A. (1)

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A., vol. 8, no. 12, pp. 1052–1058, 2006.

J. Opt. Soc. Amer. A (4)

Y. Ata and Y. Baykal, “Scintillations of optical plane and spherical waves in underwater turbulence,” J. Opt. Soc. Amer. A, vol. 31, no. 7, pp. 1552–1556, 2014.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Amer. A, vol. 16, no. 6, pp. 1417–1429, 1999.

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1187–1193, 2017.

M. Yousefi, S. Golmohammady, A. Mashal, and F. D. Kashani, “Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence,” J. Opt. Soc. Amer. A, vol. 32, no. 11, pp. 1982–1992, 2015.

J. Phys. Oceanogr. (3)

V. M. Canuto, A. Howard, Y. Cheng, and M. Dubovikov, “Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities,” J. Phys. Oceanogr., vol. 31, no. 6, pp. 1413–1426, 2001.

T. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr., vol. 10, no. 1, pp. 83–89, 1980.

L. St. Laurent and R. W. Schmitt, “The contribution of salt fingers to vertical mixing in the north Atlantic tracer release experiment,” J. Phys. Oceanogr., vol. 29, no. 7, pp. 1404–1424, 1999.

Limnol. Oceanogr. (1)

A. Wüest, G. Piepke, and D. C. Van Senden, “Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters,” Limnol. Oceanogr., vol. 45, no. 6, pp. 1388–1400, 2000.

Math Comput. (1)

A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Math Comput., vol. 22, no. 104, pp. 745–762, 1968.

Opt. Express (3)

Opt. Lett. (2)

Photon. Res. (1)

Proc. Roy. Soc. A (1)

G. I. Taylor, “The spectrum of turbulence,” Proc. Roy. Soc. A, vol. 164, no. 919, pp. 476–490, 1938.

Science (1)

R. W. Schmitt, J. Ledwell, E. Montgomery, K. Polzin, and J. Toole, “Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic,” Science, vol. 308, no. 5722, pp. 685–688, 2005.

Other (8)

T. P. Boyeret al., World Ocean Database, 2013. [Online]. Available: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html

H. Makine Oubeiet al., “Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications,” in Proc. 12th Conf. Lasers Electro-Opt. Pac. Rim, Singapore, 2017, pp. 1–2.

H. Brundage, “Designing a wireless underwater optical communication system,” M.S. thesis, Dept. Mech. Eng., Massachusetts Inst. Technol., Cambridge, MA, USA, 2010.

C. Pontbriandet al., “Wireless data harvesting using the AUV sentry and WHOI optical modem,” in Proc. OCEANS’15 - MTS/IEEE Conf., Washington, DC, USA, 2015, pp. 1–6.

J. Hansenet al., “Autonomousacoustic-aided optical localization for data transfer,” in Proc. OCEANS'15-MTS/IEEE Conf., Washington, DC, USA, 2015, pp. 1–7.

Y. Weng, J. Guo, A. Hsiao, and S.-W. Huang, “Vehicle motion on optical communication quality in the process of underwater wireless data upload,” in Proc. OCEANS’17, Anchorage, AK, USA, 2017, pp. 1–5.

M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober, “Statistical modeling of FSO fronthaul channel for drone-based networks,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–7.

R. Britter, “An experiment on turbulence in a density stratified fluid,” Ph.D. dissertation, Monash Univ., Clayton, VIC, Australia, 1974.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.