Abstract

In this paper, interference mitigation techniques based on angle diversity receivers (ADRs) are studied for optical attocell networks. Consisting of multiple photodiodes (PDs), an ADR requires appropriate signal combining schemes in order to mitigate intercell interference (ICI) in optical attocell networks. Four signal combining schemes, namely select best combining, equal gain combining, maximum ratio combining, and optimum combining are investigated. To further mitigate ICI, a novel double-source cell configuration with two transmission modes is also proposed. Results show that the systems with ADRs significantly outperform those with single-PD receivers in terms of signal-to-interference-plus-noise ratio (SINR). Also, compared to the conventional single-source cell configuration, the double-source cell configuration can provide an SINR improvement of over $\text{20}$ dB. Furthermore, an analytical framework is proposed to analyze the performance of optical attocell networks with ADRs, where different propagation scenarios such as line-of-sight and nonline-of-sight are considered. The accuracy of the proposed analytical model is validated by Monte Carlo simulations.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, “Global mobile data traffic forecast update, 2014-2019,” White Paper,  2015. [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
  2. N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.
  3. H. Chunet al., “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol., vol. 34, no. 13, pp. 3047–3052,  2016.
  4. M. Islimet al., “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet microLED,” Photon. Res., vol. 5, no. 2, pp. A35–A43,  2017.
  5. S. Hussain, M. Abdallah, and K. Qaraqe, “Hybrid radio-visible light downlink performance in RF sensitive indoor environments,” in Proc. 6th Int. Symp. Commun., Control Signal Process., Athens, Greece, May 2014, pp. 81–84.
  6. V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67,  2008.
  7. J. T. J. Penttinen, The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems. New York, NY, USA: Wiley, 2015.
  8. T. Borogovac, M. Rahaim, and J. B. Carruthers, “Spotlighting for visible light communications and illumination,” in Proc. IEEE Globecom Workshops, Miami, FL, USA, Dec. 2010, pp. 1077–1081.
  9. I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in Proc. IEEE Int. Conf. Commun., Budapest, Hungary, Jun. 2013, pp. 1–5.
  10. C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun., London, U.K., Sep. 2013, pp. 3594–3598.
  11. C. Chen, D. Tsonev, and H. Haas, “Joint transmission in indoor visible light communication downlink cellular networks,” in Proc. IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 1127–1132.
  12. Z. Chen and H. Haas, “Space division multiple access in visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5115–5119.
  13. J. Carruthers and J. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969,  2000.
  14. Y. Alqudah and M. Kavehrad, “Optimum order of angle diversity with equal-gain combining receivers for broad-band indoor optical wireless communications,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 94–105,  2004.
  15. H. L. Minhet al., “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett., vol. 22, no. 21, pp. 1598–1600,  2010.
  16. M. Alresheedi and J. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340,  2011.
  17. A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792,  2015.
  18. Z. Chen, D. Tsonev, and H. Haas, “Improving SINR in indoor cellular visible light communication networks,” in Proc. IEEE Int. Conf. Commun., Sydney, NSW, Australia, Jun. 2014, pp. 3383–3388.
  19. Z. Chen, D. Tsonev, and H. Haas, “A novel double-source cell configuration for indoor optical attocell networks,” in Proc. IEEE Global Commun. Conf., Austin, TX, USA, Dec. 2014, pp. 2125–2130.
  20. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298,  1997.
  21. J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.
  22. S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating access point selection in IEEE 802.11 wireless networks,” in Proc. ACM 5th SIGCOMM Conf. Internet Meas., Berkeley, CA, USA, Oct. 2005, pp. 293–298.
  23. J. Winters, “Optimum combining in digital mobile radio with cochannel interference,” IEEE J. Sel. Areas Commun., vol. SAC-2, no. 4, pp. 528–539,  1984.
  24. A. Jalajakumari, K. Cameron, D. Tsonev, H. Haas, and R. Henderson, “An energy efficient high-speed digital LED driver for visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5054–5059.
  25. Z. Chen and H. Haas, “A simplified model for indoor optical attocell networks,” in Proc. IEEE Summer Topicals Meeting Ser., Nassau, Bahamas, Jul. 2015, pp. 167–168.
  26. C. Chen, D. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156,  2016.
  27. R. H. Simons and A. Bean, Lighting Engineering: Applied Calculations.New York, NY, USA: Architectural Press, 2008.
  28. F. E. Alsaadi and J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in Proc. IEEE Int. Conf. Commun., Beijing, China, May 2008, pp. 5196–5203.
  29. Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 2017, pp. 1–3.
  30. C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightw. Technol., vol. 33, no. 19, pp. 3986–4000,  2015.

2017 (1)

2016 (2)

H. Chunet al., “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol., vol. 34, no. 13, pp. 3047–3052,  2016.

C. Chen, D. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156,  2016.

2015 (3)

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightw. Technol., vol. 33, no. 19, pp. 3986–4000,  2015.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792,  2015.

2011 (1)

M. Alresheedi and J. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340,  2011.

2010 (1)

H. L. Minhet al., “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett., vol. 22, no. 21, pp. 1598–1600,  2010.

2008 (1)

V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67,  2008.

2004 (1)

Y. Alqudah and M. Kavehrad, “Optimum order of angle diversity with equal-gain combining receivers for broad-band indoor optical wireless communications,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 94–105,  2004.

2000 (1)

J. Carruthers and J. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969,  2000.

1993 (1)

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.

1984 (1)

J. Winters, “Optimum combining in digital mobile radio with cochannel interference,” IEEE J. Sel. Areas Commun., vol. SAC-2, no. 4, pp. 528–539,  1984.

Abdallah, M.

S. Hussain, M. Abdallah, and K. Qaraqe, “Hybrid radio-visible light downlink performance in RF sensitive indoor environments,” in Proc. 6th Int. Symp. Commun., Control Signal Process., Athens, Greece, May 2014, pp. 81–84.

Alqudah, Y.

Y. Alqudah and M. Kavehrad, “Optimum order of angle diversity with equal-gain combining receivers for broad-band indoor optical wireless communications,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 94–105,  2004.

Alresheedi, M.

M. Alresheedi and J. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340,  2011.

Alsaadi, F. E.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in Proc. IEEE Int. Conf. Commun., Beijing, China, May 2008, pp. 5196–5203.

Andrews, J.

V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67,  2008.

Barry, J.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298,  1997.

Basnayaka, D.

C. Chen, D. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156,  2016.

Bean, A.

R. H. Simons and A. Bean, Lighting Engineering: Applied Calculations.New York, NY, USA: Architectural Press, 2008.

Borogovac, T.

T. Borogovac, M. Rahaim, and J. B. Carruthers, “Spotlighting for visible light communications and illumination,” in Proc. IEEE Globecom Workshops, Miami, FL, USA, Dec. 2010, pp. 1077–1081.

Burchardt, H.

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in Proc. IEEE Int. Conf. Commun., Budapest, Hungary, Jun. 2013, pp. 1–5.

Cameron, K.

A. Jalajakumari, K. Cameron, D. Tsonev, H. Haas, and R. Henderson, “An energy efficient high-speed digital LED driver for visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5054–5059.

Cao, Z.

Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 2017, pp. 1–3.

Carruthers, J.

J. Carruthers and J. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969,  2000.

Carruthers, J. B.

T. Borogovac, M. Rahaim, and J. B. Carruthers, “Spotlighting for visible light communications and illumination,” in Proc. IEEE Globecom Workshops, Miami, FL, USA, Dec. 2010, pp. 1077–1081.

Chandrasekhar, V.

V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67,  2008.

Chen, C.

C. Chen, D. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156,  2016.

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightw. Technol., vol. 33, no. 19, pp. 3986–4000,  2015.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun., London, U.K., Sep. 2013, pp. 3594–3598.

C. Chen, D. Tsonev, and H. Haas, “Joint transmission in indoor visible light communication downlink cellular networks,” in Proc. IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 1127–1132.

Chen, C. S.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792,  2015.

Chen, Z.

Z. Chen, D. Tsonev, and H. Haas, “Improving SINR in indoor cellular visible light communication networks,” in Proc. IEEE Int. Conf. Commun., Sydney, NSW, Australia, Jun. 2014, pp. 3383–3388.

Z. Chen, D. Tsonev, and H. Haas, “A novel double-source cell configuration for indoor optical attocell networks,” in Proc. IEEE Global Commun. Conf., Austin, TX, USA, Dec. 2014, pp. 2125–2130.

Z. Chen and H. Haas, “Space division multiple access in visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5115–5119.

Z. Chen and H. Haas, “A simplified model for indoor optical attocell networks,” in Proc. IEEE Summer Topicals Meeting Ser., Nassau, Bahamas, Jul. 2015, pp. 167–168.

Chi, N.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.

Chun, H.

H. Chunet al., “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol., vol. 34, no. 13, pp. 3047–3052,  2016.

Diot, C.

S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating access point selection in IEEE 802.11 wireless networks,” in Proc. ACM 5th SIGCOMM Conf. Internet Meas., Berkeley, CA, USA, Oct. 2005, pp. 293–298.

Elmirghani, J.

M. Alresheedi and J. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340,  2011.

Elmirghani, J. M. H.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in Proc. IEEE Int. Conf. Commun., Beijing, China, May 2008, pp. 5196–5203.

Gatherer, A.

V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67,  2008.

Haas, H.

C. Chen, D. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156,  2016.

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightw. Technol., vol. 33, no. 19, pp. 3986–4000,  2015.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.

Z. Chen and H. Haas, “A simplified model for indoor optical attocell networks,” in Proc. IEEE Summer Topicals Meeting Ser., Nassau, Bahamas, Jul. 2015, pp. 167–168.

A. Jalajakumari, K. Cameron, D. Tsonev, H. Haas, and R. Henderson, “An energy efficient high-speed digital LED driver for visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5054–5059.

Z. Chen, D. Tsonev, and H. Haas, “A novel double-source cell configuration for indoor optical attocell networks,” in Proc. IEEE Global Commun. Conf., Austin, TX, USA, Dec. 2014, pp. 2125–2130.

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in Proc. IEEE Int. Conf. Commun., Budapest, Hungary, Jun. 2013, pp. 1–5.

Z. Chen, D. Tsonev, and H. Haas, “Improving SINR in indoor cellular visible light communication networks,” in Proc. IEEE Int. Conf. Commun., Sydney, NSW, Australia, Jun. 2014, pp. 3383–3388.

Z. Chen and H. Haas, “Space division multiple access in visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5115–5119.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun., London, U.K., Sep. 2013, pp. 3594–3598.

C. Chen, D. Tsonev, and H. Haas, “Joint transmission in indoor visible light communication downlink cellular networks,” in Proc. IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 1127–1132.

Henderson, R.

A. Jalajakumari, K. Cameron, D. Tsonev, H. Haas, and R. Henderson, “An energy efficient high-speed digital LED driver for visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5054–5059.

Ho, S. W.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792,  2015.

Huang, X. L.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.

Hussain, S.

S. Hussain, M. Abdallah, and K. Qaraqe, “Hybrid radio-visible light downlink performance in RF sensitive indoor environments,” in Proc. 6th Int. Symp. Commun., Control Signal Process., Athens, Greece, May 2014, pp. 81–84.

Islim, M.

Jalajakumari, A.

A. Jalajakumari, K. Cameron, D. Tsonev, H. Haas, and R. Henderson, “An energy efficient high-speed digital LED driver for visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5054–5059.

Jiao, Y.

Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 2017, pp. 1–3.

Kahn, J.

J. Carruthers and J. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969,  2000.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298,  1997.

Kavehrad, M.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.

Y. Alqudah and M. Kavehrad, “Optimum order of angle diversity with equal-gain combining receivers for broad-band indoor optical wireless communications,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 94–105,  2004.

Koonen, T.

Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 2017, pp. 1–3.

Krause, W.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.

Kurose, J.

S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating access point selection in IEEE 802.11 wireless networks,” in Proc. ACM 5th SIGCOMM Conf. Internet Meas., Berkeley, CA, USA, Oct. 2005, pp. 293–298.

Lee, E.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.

Little, T. D. C.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.

Messerschmitt, D.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.

Minh, H. L.

H. L. Minhet al., “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett., vol. 22, no. 21, pp. 1598–1600,  2010.

Nuwanpriya, A.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792,  2015.

Papagiannaki, K.

S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating access point selection in IEEE 802.11 wireless networks,” in Proc. ACM 5th SIGCOMM Conf. Internet Meas., Berkeley, CA, USA, Oct. 2005, pp. 293–298.

Penttinen, J. T. J.

J. T. J. Penttinen, The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems. New York, NY, USA: Wiley, 2015.

Qaraqe, K.

S. Hussain, M. Abdallah, and K. Qaraqe, “Hybrid radio-visible light downlink performance in RF sensitive indoor environments,” in Proc. 6th Int. Symp. Commun., Control Signal Process., Athens, Greece, May 2014, pp. 81–84.

Rahaim, M.

T. Borogovac, M. Rahaim, and J. B. Carruthers, “Spotlighting for visible light communications and illumination,” in Proc. IEEE Globecom Workshops, Miami, FL, USA, Dec. 2010, pp. 1077–1081.

Serafimovski, N.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun., London, U.K., Sep. 2013, pp. 3594–3598.

Shen, L.

Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 2017, pp. 1–3.

Simons, R. H.

R. H. Simons and A. Bean, Lighting Engineering: Applied Calculations.New York, NY, USA: Architectural Press, 2008.

Stefan, I.

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in Proc. IEEE Int. Conf. Commun., Budapest, Hungary, Jun. 2013, pp. 1–5.

Towsley, D.

S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating access point selection in IEEE 802.11 wireless networks,” in Proc. ACM 5th SIGCOMM Conf. Internet Meas., Berkeley, CA, USA, Oct. 2005, pp. 293–298.

Tsonev, D.

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightw. Technol., vol. 33, no. 19, pp. 3986–4000,  2015.

A. Jalajakumari, K. Cameron, D. Tsonev, H. Haas, and R. Henderson, “An energy efficient high-speed digital LED driver for visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5054–5059.

C. Chen, D. Tsonev, and H. Haas, “Joint transmission in indoor visible light communication downlink cellular networks,” in Proc. IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 1127–1132.

Z. Chen, D. Tsonev, and H. Haas, “Improving SINR in indoor cellular visible light communication networks,” in Proc. IEEE Int. Conf. Commun., Sydney, NSW, Australia, Jun. 2014, pp. 3383–3388.

Z. Chen, D. Tsonev, and H. Haas, “A novel double-source cell configuration for indoor optical attocell networks,” in Proc. IEEE Global Commun. Conf., Austin, TX, USA, Dec. 2014, pp. 2125–2130.

Vasudevan, S.

S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating access point selection in IEEE 802.11 wireless networks,” in Proc. ACM 5th SIGCOMM Conf. Internet Meas., Berkeley, CA, USA, Oct. 2005, pp. 293–298.

Videv, S.

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightw. Technol., vol. 33, no. 19, pp. 3986–4000,  2015.

Winters, J.

J. Winters, “Optimum combining in digital mobile radio with cochannel interference,” IEEE J. Sel. Areas Commun., vol. SAC-2, no. 4, pp. 528–539,  1984.

Zhao, X.

Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 2017, pp. 1–3.

IEEE Commun. Mag. (1)

V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67,  2008.

IEEE J. Sel. Areas Commun. (4)

M. Alresheedi and J. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340,  2011.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792,  2015.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379,  1993.

J. Winters, “Optimum combining in digital mobile radio with cochannel interference,” IEEE J. Sel. Areas Commun., vol. SAC-2, no. 4, pp. 528–539,  1984.

IEEE Photon. Technol. Lett. (1)

H. L. Minhet al., “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett., vol. 22, no. 21, pp. 1598–1600,  2010.

IEEE Trans. Commun. (1)

J. Carruthers and J. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969,  2000.

IEEE Trans. Veh. Technol. (1)

Y. Alqudah and M. Kavehrad, “Optimum order of angle diversity with equal-gain combining receivers for broad-band indoor optical wireless communications,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 94–105,  2004.

IEEE Wireless Commun. (1)

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: Demand factors, benefits and opportunities [Guest Editorial],” IEEE Wireless Commun., vol. 22, no. 2, pp. 5–7,  2015.

J. Lightw. Technol. (3)

H. Chunet al., “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol., vol. 34, no. 13, pp. 3047–3052,  2016.

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightw. Technol., vol. 33, no. 19, pp. 3986–4000,  2015.

C. Chen, D. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156,  2016.

Photon. Res. (1)

Other (17)

Cisco Visual Networking Index, “Global mobile data traffic forecast update, 2014-2019,” White Paper,  2015. [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html

R. H. Simons and A. Bean, Lighting Engineering: Applied Calculations.New York, NY, USA: Architectural Press, 2008.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in Proc. IEEE Int. Conf. Commun., Beijing, China, May 2008, pp. 5196–5203.

Z. Cao, L. Shen, Y. Jiao, X. Zhao, and T. Koonen, “200 Gbps OOK transmission over an indoor optical wireless link enabled by an integrated cascaded aperture optical receiver,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 2017, pp. 1–3.

S. Hussain, M. Abdallah, and K. Qaraqe, “Hybrid radio-visible light downlink performance in RF sensitive indoor environments,” in Proc. 6th Int. Symp. Commun., Control Signal Process., Athens, Greece, May 2014, pp. 81–84.

J. T. J. Penttinen, The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems. New York, NY, USA: Wiley, 2015.

T. Borogovac, M. Rahaim, and J. B. Carruthers, “Spotlighting for visible light communications and illumination,” in Proc. IEEE Globecom Workshops, Miami, FL, USA, Dec. 2010, pp. 1077–1081.

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in Proc. IEEE Int. Conf. Commun., Budapest, Hungary, Jun. 2013, pp. 1–5.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun., London, U.K., Sep. 2013, pp. 3594–3598.

C. Chen, D. Tsonev, and H. Haas, “Joint transmission in indoor visible light communication downlink cellular networks,” in Proc. IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 1127–1132.

Z. Chen and H. Haas, “Space division multiple access in visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5115–5119.

A. Jalajakumari, K. Cameron, D. Tsonev, H. Haas, and R. Henderson, “An energy efficient high-speed digital LED driver for visible light communications,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5054–5059.

Z. Chen and H. Haas, “A simplified model for indoor optical attocell networks,” in Proc. IEEE Summer Topicals Meeting Ser., Nassau, Bahamas, Jul. 2015, pp. 167–168.

S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating access point selection in IEEE 802.11 wireless networks,” in Proc. ACM 5th SIGCOMM Conf. Internet Meas., Berkeley, CA, USA, Oct. 2005, pp. 293–298.

Z. Chen, D. Tsonev, and H. Haas, “Improving SINR in indoor cellular visible light communication networks,” in Proc. IEEE Int. Conf. Commun., Sydney, NSW, Australia, Jun. 2014, pp. 3383–3388.

Z. Chen, D. Tsonev, and H. Haas, “A novel double-source cell configuration for indoor optical attocell networks,” in Proc. IEEE Global Commun. Conf., Austin, TX, USA, Dec. 2014, pp. 2125–2130.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298,  1997.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.