Abstract

We report a high-data-rate two-dimensional photodetector array (2D-PDA) operated over 10 GHz for compact receiver systems in multicore fiber (MCF), few-mode fiber (FMF), and FMF-MCF, which can be directly coupled to multiparallel beams from the MCF and FMF. The 2D-PDA (pixel size of 20–30 μm, pixel number of 32) were designed and characterized for the frequency response and crosstalk. In the on-wafer probing test, the averaged 3-dB bandwidth of 11.2 GHz and 19.8 GHz were measured for 30-μm and 20-μm pixels, respectively. In the MCF direct-coupling demonstration with the 2D-PDA, the selected 16 pixels could work well at 25 Gb/s (nonreturn-to-zero: NRZ). By using triangular-shape-aligned seven-core fiber and the square-shape-aligned seven cores in the 2D-PDA, the coupling efficiency and alignment tolerance were investigated for the universal MCF photoreceiver. In the demonstration of the mode-division multiplexing signal detection with 2D-PDA, the multiplexed three-mode signal with 20-Gbps quadrature phase-shift keying was directly coupled to the 2D-PDA. Through the electrical phase matching system with the multiple-input multiple-output function, the three-mode signal (20 Gbps in each mode) could be successfully detected and separated error-free.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco White paper, “The zettabyte era: Trends and analysis,”  2017.
  2. “5G New wave towards future societies in the 2020s,” 5G Forum white paper,  2015.
  3. S. T. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.1.
  4. R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.
  5. F. Yamanet al., “10 × 112 Gb/s PDM-QPSK transmission over 5032 km in few-mode Fibers,” Opt. Express, vol. 18, no. 20, pp. 21342–21349, 2010.
  6. J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.
  7. T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.
  8. T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightw. Technol., vol. 34, no. 2, pp. 582–592,  2016.
  9. Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248 um,” in Proc. Opt. Fiber Commun., 2017, paper Th. 1H.2.
  10. Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.
  11. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express, vol. 18, no. 12, pp. 13250–13257, 2010.
  12. NICT Press release, “Realization of world record fiber-capacity of 2.15 Pb/s transmission,” , 2015. [Online]. Available: https://www.nict.go.jp/en/press/2015/10/13-1.html
  13. D. Somaet al., “10.16 Peta-bit/s Dense SDM/WDM transmission over Low-DMD 6-Mode 19-Core Fibre across C+L Band,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th.PDP.A.1.
  14. T. Mizunoet al., “32-Core Dense SDM Unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Proc. Eur. Conf. Opt. Commun., 2016, paper Th5C.3.
  15. T. Hayashiet al., “6-Mode 19-Core Fiber for weakly-coupled mode-multiplexed transmission over uncoupled cores,” in Proc. Opt. Fiber Commun. Conf., 2016, paper W1F.4.
  16. V. I. Koppet al., “Two-dimensional, 37-channel, high-bandwidth, ultra-dense silicon photonics optical interface,” J. Lightw. Technol., vol. 33, no. 3, pp. 653–656,  2015.
  17. P. Liaoet al., “Ultradense silicon photonic interface for optical interconnection,” IEEE Photon. Technol. Lett., vol. 27, no. 7, pp. 725–728,  2015.
  18. C. Hoessbacheret al., “Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays,” in Proc. Opt. Fiber Commun. Conf., 2016, paper Th1F.6.
  19. T. Watanabe, R. Kawata, and Yasuo Kokubun, “Instantaneous mode analysis of degenerated orthogonal polarization modes using polarization-splitted coherent detection by quadrant detector,” in Proc. IEIEC, 2015, paper B-10-12 (in Japanese).
  20. N. K. Fontaineet al., “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Proc. Opt. Fiber Commun./Nat Fiber Opt. Eng. Conf., 2012, paper PDP5B.1.
  21. T. Umezawaet al., “10-GHz 32-pixel 2-D Photodetector array for advanced optical fiber communications,” in Proc. CLEO, 2017, paper SF2I.1.
  22. T. Umezawaet al., “Dense SDM 32-pixel 2-D Photodetector Array,” in Proc. Eur. Conf. Opt. Commun., 2017, paper P1.SC2.29.
  23. K. Kusakata, T. Umezawa, T. Sakamoto, and T. Kawanishi, “Phase measurement of multi-mode using high speed 2d photodetector array,” in Proc. of IEICE, 2017, paper C-14-16 (in Japanese).
  24. T. Sakamotoet al., “Spatial coherent matched detection using high-speed two-dimensional photo-diode array for full-channel demultiplexing and demodulation of mode-division-multiplexed signals,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Tu.1.F5.

2017 (2)

Cisco White paper, “The zettabyte era: Trends and analysis,”  2017.

Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.

2016 (1)

T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightw. Technol., vol. 34, no. 2, pp. 582–592,  2016.

2015 (3)

“5G New wave towards future societies in the 2020s,” 5G Forum white paper,  2015.

V. I. Koppet al., “Two-dimensional, 37-channel, high-bandwidth, ultra-dense silicon photonics optical interface,” J. Lightw. Technol., vol. 33, no. 3, pp. 653–656,  2015.

P. Liaoet al., “Ultradense silicon photonic interface for optical interconnection,” IEEE Photon. Technol. Lett., vol. 27, no. 7, pp. 725–728,  2015.

2013 (1)

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

2010 (2)

Aikawa, K.

Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.

Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248 um,” in Proc. Opt. Fiber Commun., 2017, paper Th. 1H.2.

Awaji, Y.

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.

Bai, N.

Croussore, K.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.

Fontaine, N. K.

N. K. Fontaineet al., “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Proc. Opt. Fiber Commun./Nat Fiber Opt. Eng. Conf., 2012, paper PDP5B.1.

Going, R.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.

Hayashi, T.

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

T. Hayashiet al., “6-Mode 19-Core Fiber for weakly-coupled mode-multiplexed transmission over uncoupled cores,” in Proc. Opt. Fiber Commun. Conf., 2016, paper W1F.4.

Hoessbacher, C.

C. Hoessbacheret al., “Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays,” in Proc. Opt. Fiber Commun. Conf., 2016, paper Th1F.6.

Kawanishi, T.

K. Kusakata, T. Umezawa, T. Sakamoto, and T. Kawanishi, “Phase measurement of multi-mode using high speed 2d photodetector array,” in Proc. of IEICE, 2017, paper C-14-16 (in Japanese).

Kawata, R.

T. Watanabe, R. Kawata, and Yasuo Kokubun, “Instantaneous mode analysis of degenerated orthogonal polarization modes using polarization-splitted coherent detection by quadrant detector,” in Proc. IEIEC, 2015, paper B-10-12 (in Japanese).

Klaus, W.

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.

Kokubun, Yasuo

T. Watanabe, R. Kawata, and Yasuo Kokubun, “Instantaneous mode analysis of degenerated orthogonal polarization modes using polarization-splitted coherent detection by quadrant detector,” in Proc. IEIEC, 2015, paper B-10-12 (in Japanese).

Kopp, V. I.

V. I. Koppet al., “Two-dimensional, 37-channel, high-bandwidth, ultra-dense silicon photonics optical interface,” J. Lightw. Technol., vol. 33, no. 3, pp. 653–656,  2015.

Kusakata, K.

K. Kusakata, T. Umezawa, T. Sakamoto, and T. Kawanishi, “Phase measurement of multi-mode using high speed 2d photodetector array,” in Proc. of IEICE, 2017, paper C-14-16 (in Japanese).

Lauermann, M.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.

Le, S. T.

S. T. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.1.

Li, G.

Liao, P.

P. Liaoet al., “Ultradense silicon photonic interface for optical interconnection,” IEEE Photon. Technol. Lett., vol. 27, no. 7, pp. 725–728,  2015.

Maher, R.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.

Matsuo, S.

Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.

Mendinueta, J. M. D.

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.

Miyamoto, Y.

T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightw. Technol., vol. 34, no. 2, pp. 582–592,  2016.

Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248 um,” in Proc. Opt. Fiber Commun., 2017, paper Th. 1H.2.

Mizuno, T.

T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightw. Technol., vol. 34, no. 2, pp. 582–592,  2016.

T. Mizunoet al., “32-Core Dense SDM Unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Proc. Eur. Conf. Opt. Commun., 2016, paper Th5C.3.

Morioka, T.

Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248 um,” in Proc. Opt. Fiber Commun., 2017, paper Th. 1H.2.

Nagashima, T.

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

Puttnam, B. J.

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.

Rahn, J.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.

Saitoh, K.

Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.

Sakaguchi, J.

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.

Sakamoto, T.

T. Sakamotoet al., “Spatial coherent matched detection using high-speed two-dimensional photo-diode array for full-channel demultiplexing and demodulation of mode-division-multiplexed signals,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Tu.1.F5.

K. Kusakata, T. Umezawa, T. Sakamoto, and T. Kawanishi, “Phase measurement of multi-mode using high speed 2d photodetector array,” in Proc. of IEICE, 2017, paper C-14-16 (in Japanese).

Sano, A.

T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightw. Technol., vol. 34, no. 2, pp. 582–592,  2016.

Sasaki, T.

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

Sasaki, Y.

Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.

Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248 um,” in Proc. Opt. Fiber Commun., 2017, paper Th. 1H.2.

Sasaoka, E.

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

Shimakawa, O.

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

Soma, D.

D. Somaet al., “10.16 Peta-bit/s Dense SDM/WDM transmission over Low-DMD 6-Mode 19-Core Fibre across C+L Band,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th.PDP.A.1.

Takara, H.

T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightw. Technol., vol. 34, no. 2, pp. 582–592,  2016.

Takenaga, K.

Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.

Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248 um,” in Proc. Opt. Fiber Commun., 2017, paper Th. 1H.2.

Taru, T.

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

Umezawa, T.

K. Kusakata, T. Umezawa, T. Sakamoto, and T. Kawanishi, “Phase measurement of multi-mode using high speed 2d photodetector array,” in Proc. of IEICE, 2017, paper C-14-16 (in Japanese).

T. Umezawaet al., “10-GHz 32-pixel 2-D Photodetector array for advanced optical fiber communications,” in Proc. CLEO, 2017, paper SF2I.1.

T. Umezawaet al., “Dense SDM 32-pixel 2-D Photodetector Array,” in Proc. Eur. Conf. Opt. Commun., 2017, paper P1.SC2.29.

Wada, N.

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.

Wang, T.

Watanabe, T.

T. Watanabe, R. Kawata, and Yasuo Kokubun, “Instantaneous mode analysis of degenerated orthogonal polarization modes using polarization-splitted coherent detection by quadrant detector,” in Proc. IEIEC, 2015, paper B-10-12 (in Japanese).

Xu, X.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.

Yaman, F.

Zhu, B.

IEEE Photon. Technol. Lett. (1)

P. Liaoet al., “Ultradense silicon photonic interface for optical interconnection,” IEEE Photon. Technol. Lett., vol. 27, no. 7, pp. 725–728,  2015.

J. Lightw. Technol. (2)

T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber,” J. Lightw. Technol., vol. 34, no. 2, pp. 582–592,  2016.

V. I. Koppet al., “Two-dimensional, 37-channel, high-bandwidth, ultra-dense silicon photonics optical interface,” J. Lightw. Technol., vol. 33, no. 3, pp. 653–656,  2015.

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, and K. Saitoh, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27,  2017.

Other (18)

NICT Press release, “Realization of world record fiber-capacity of 2.15 Pb/s transmission,” , 2015. [Online]. Available: https://www.nict.go.jp/en/press/2015/10/13-1.html

D. Somaet al., “10.16 Peta-bit/s Dense SDM/WDM transmission over Low-DMD 6-Mode 19-Core Fibre across C+L Band,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th.PDP.A.1.

T. Mizunoet al., “32-Core Dense SDM Unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Proc. Eur. Conf. Opt. Commun., 2016, paper Th5C.3.

T. Hayashiet al., “6-Mode 19-Core Fiber for weakly-coupled mode-multiplexed transmission over uncoupled cores,” in Proc. Opt. Fiber Commun. Conf., 2016, paper W1F.4.

Cisco White paper, “The zettabyte era: Trends and analysis,”  2017.

“5G New wave towards future societies in the 2020s,” 5G Forum white paper,  2015.

S. T. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.1.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Th. PDP. B.2.

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, paper M.1.E.4.

T. Hayashi, T. Taru, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission,” SEI Technical Review number 77,  2013, pp. 14–22.

C. Hoessbacheret al., “Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays,” in Proc. Opt. Fiber Commun. Conf., 2016, paper Th1F.6.

T. Watanabe, R. Kawata, and Yasuo Kokubun, “Instantaneous mode analysis of degenerated orthogonal polarization modes using polarization-splitted coherent detection by quadrant detector,” in Proc. IEIEC, 2015, paper B-10-12 (in Japanese).

N. K. Fontaineet al., “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Proc. Opt. Fiber Commun./Nat Fiber Opt. Eng. Conf., 2012, paper PDP5B.1.

T. Umezawaet al., “10-GHz 32-pixel 2-D Photodetector array for advanced optical fiber communications,” in Proc. CLEO, 2017, paper SF2I.1.

T. Umezawaet al., “Dense SDM 32-pixel 2-D Photodetector Array,” in Proc. Eur. Conf. Opt. Commun., 2017, paper P1.SC2.29.

K. Kusakata, T. Umezawa, T. Sakamoto, and T. Kawanishi, “Phase measurement of multi-mode using high speed 2d photodetector array,” in Proc. of IEICE, 2017, paper C-14-16 (in Japanese).

T. Sakamotoet al., “Spatial coherent matched detection using high-speed two-dimensional photo-diode array for full-channel demultiplexing and demodulation of mode-division-multiplexed signals,” in Proc. Eur. Conf. Opt. Commun., 2017, paper Tu.1.F5.

Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248 um,” in Proc. Opt. Fiber Commun., 2017, paper Th. 1H.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.