Abstract

InAlAs digital alloy avalanche photodiodes exhibit lower excess noise than those fabricated from conventional random alloy material. Experiment and Monte Carlo simulation both show that relative to the random alloy the ionization probability for electrons is slightly lower while that of holes is greatly suppressed. We propose that the suppression of carrier ionization probability in digital alloys happens because of the creation of minibands that localize carriers. The difference of suppression between conduction bands and valence bands comes from the difference of scattering path.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription