Abstract

We investigate the effect of polarization cross-coupling at polarization-maintaining (PM) fiber connectors on the accuracy of an interferometric fiber-optic current sensor. The sensor uses the Faraday effect in a fiber coil operated in reflection mode and an interrogator based on nonreciprocal phase modulation. PM connectors in the fiber link between the sensor's opto-electronic module and the fiber coil give rise to signal instability due to a limited and insufficiently stable polarization extinction ratio (typically <25–30 dB). As a result the accuracy of the sensor can be well outside the allowed tolerances of applications in the electric power industry which often demands accuracy to within ±0.2%. We demonstrate that by means of a modified optical circuit the disturbing effects of polarization cross-coupling can be largely eliminated. The modified circuit introduces group delays for the cross-coupled light waves relative to the undisturbed waves much larger than the coherence length of the broadband light source. We theoretically and experimentally show that connector extinction ratios well below 20 dB are still uncritical. Furthermore, we verify the superiority of the modified circuit at changing connector temperature (and hence changing temperature-induced stress in the connector ferrules) and at repeated connector open-close operations.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription