Abstract

Network slices combine resource virtualization with the isolation level required by future 5G applications. In addition, the use of monitoring and data analytics help to maintain the required network performance, while reducing total cost of ownership. In this paper, an architecture to enable autonomic slice networking is presented. Extended nodes make local decisions close to network devices, whereas centralized domain systems collate and export metered data transparently to customer controllers, all of them leveraging customizable and isolated data analytics processes. Discovered knowledge can be applied for both proactive and reactive network slice reconfiguration, triggered either by service providers or customers, thanks to the interaction with state-of-the-art software-defined networking controllers and planning tools. The architecture is experimentally demonstrated by means of a complex use case for a multidomain multilayer multiprotocol label switching (MPLS)-over-optical network. In particular, the use case consists of the following observe–analyze–act loops: 1) proactive network slice rerouting after bit error rate (BER) degradation detection in a lightpath supporting a virtual link (vlink); 2) reactive core network restoration after optical link failure; and 3) reactive network slice rerouting after the degraded lightpath is restored. The proposed architecture is experimentally validated on a distributed testbed connecting premises in UPC (Spain) and CNIT (Italy).

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription