Abstract

In view of the growing demand for fiber beam delivery in manufacturing systems with close to diffraction-limited beam quality, we present an analysis of the propagation of a nearly diffraction-limited laser beam through 5 to 10 m long multimode step-index fibers with a numerical aperture of 0.111 and core diameters of up to 80 $\mu$ m. The influence of the launching conditions are investigated theoretically and experimentally by varying the beam size of the input beam. At a core diameter as high as 80 $\mu$ m, corresponding to a mode field area of 2800 $\mu$ m2, and an optimum launching condition, the transmitted M2 was measured to be around 1.3. It is shown that bending of the fibers down to radii as small as 2 cm barely influences the beam quality factor of the transmitted beam for all the tested fibers as the M2 was always found to be smaller than 1.5. The threshold of stimulated Raman scattering was measured to be around 60 kW for a fiber loosely placed on the table ( $\text{r}_{\text{bend}}$ $\geq$ 25 cm) with a total length of 10 m and a core diameter of 80 $\mu$ m.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt., vol. 11, no. 11, pp. 2489–2494, 1972.
  2. M. Abdou Ahmed and A. Voss, “Optical fibres for high-power singlemode beam delivery,” Optik Photonik, vol. 7, no. 2, pp. 38–43, 2012.
  3. S. Shaklan, “Measurement of intermodal coupling in weakly multimode fibre optics,” Electron. Lett., vol. 26, no. 24, pp. 2022–2024, 1990.
  4. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett., vol. 23, no. 1, pp. 52–54, 1998.
  5. J.-P. Negelet al., “Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber,” Laser Phys. Lett., vol. 11, no. 5, 2014, Art. no. .
  6. C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun., vol. 269, no. 2, pp. 310–314, 2007.
  7. S. Hurand, L.-A. Chauny, H. El-Rabii, S. Joshi, and A. P. Yalin, “Mode coupling and output beam quality of 100–400 $\mu$m core silica fibers,” Appl. Opt., vol. 50, no. 4, pp. 492–499, 2011.
  8. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J., vol. 51, no. 8, pp. 1767–1783, 1972.
  9. K. Okamoto, Fundamentals of Optical Waveguides. (Optics and Photonics), San Diego, CA, USA: Academic, 2000.
  10. M. Vogel, M. Abdou Ahmed, A. Voss, D. Kauffmann, and T. Graf, “Full vectorial finite-element simulations of Bragg fibers for single-mode beam delivery systems,” Proc. SPIE vol. 6998, 2008, Art. no. .
  11. N. Bhatia and J. John, “Single-mode-multimode-multimode device: Sensitivity of the single mode to the fiber parameters and geometrical misalignments,” J. Opt. Soc. Amer. B, vol. 33, no. 2, pp. 211–219, 2016.
  12. D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightw. Technol., vol. 27, no. 8, pp. 1018–1026, 2009.
  13. H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightw. Technol., vol. 24, no. 3, pp. 1350–1355, 2006.
  14. H. M. Presby, D. Marcuse, and L. G. Cohen, “Calculation of bandwidth from index profiles of optical fibers. 2: Experiment,” Appl. Opt., vol. 18, no. 19, pp. 3249–3255, 1979.
  15. K.-P. Ho and J. M. Kahn, “Mode coupling and its impact on spatially multiplexed systems,” in Optical Fiber Telecommunications. Amsterdam, the Netherlands: Elsevier, 2013, pp. 491–568.
  16. Lasers and laser-related equipment–Test methods for laser beam widths, divergence angles and beam propagation ratios, ISO 11146, 2005.
  17. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express, vol. 15, no. 23, pp. 15402–15409, 2007.
  18. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Amer. B, vol. 27, no. 11, pp. B63–B92, 2010.
  19. G. P. Agrawal, Nonlinear Fiber Optics(Optics and Photonics), 3rd ed. San Diego, CA, USA: Academic, 2001.
  20. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Amer. B, vol. 19, no. 12, pp. 2886–2892, 2002.
  21. R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron., vol. 15, no. 10, pp. 1157–1160, 1979.
  22. D. Marcuse, Theory of Dielectric Optical Waveguides. (Quantum Electronics—Principles and Applications), 2nd ed. Boston, MA, USA: Academic, 1991.

2016 (1)

N. Bhatia and J. John, “Single-mode-multimode-multimode device: Sensitivity of the single mode to the fiber parameters and geometrical misalignments,” J. Opt. Soc. Amer. B, vol. 33, no. 2, pp. 211–219, 2016.

2014 (1)

J.-P. Negelet al., “Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber,” Laser Phys. Lett., vol. 11, no. 5, 2014, Art. no. .

2012 (1)

M. Abdou Ahmed and A. Voss, “Optical fibres for high-power singlemode beam delivery,” Optik Photonik, vol. 7, no. 2, pp. 38–43, 2012.

2011 (1)

2010 (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Amer. B, vol. 27, no. 11, pp. B63–B92, 2010.

2009 (1)

D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightw. Technol., vol. 27, no. 8, pp. 1018–1026, 2009.

2007 (2)

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun., vol. 269, no. 2, pp. 310–314, 2007.

S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express, vol. 15, no. 23, pp. 15402–15409, 2007.

2006 (1)

H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightw. Technol., vol. 24, no. 3, pp. 1350–1355, 2006.

2005 (1)

Lasers and laser-related equipment–Test methods for laser beam widths, divergence angles and beam propagation ratios, ISO 11146, 2005.

2002 (1)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Amer. B, vol. 19, no. 12, pp. 2886–2892, 2002.

1998 (1)

1990 (1)

S. Shaklan, “Measurement of intermodal coupling in weakly multimode fibre optics,” Electron. Lett., vol. 26, no. 24, pp. 2022–2024, 1990.

1979 (2)

H. M. Presby, D. Marcuse, and L. G. Cohen, “Calculation of bandwidth from index profiles of optical fibers. 2: Experiment,” Appl. Opt., vol. 18, no. 19, pp. 3249–3255, 1979.

R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron., vol. 15, no. 10, pp. 1157–1160, 1979.

1972 (2)

Abdou Ahmed, M.

M. Abdou Ahmed and A. Voss, “Optical fibres for high-power singlemode beam delivery,” Optik Photonik, vol. 7, no. 2, pp. 38–43, 2012.

M. Vogel, M. Abdou Ahmed, A. Voss, D. Kauffmann, and T. Graf, “Full vectorial finite-element simulations of Bragg fibers for single-mode beam delivery systems,” Proc. SPIE vol. 6998, 2008, Art. no. .

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics(Optics and Photonics), 3rd ed. San Diego, CA, USA: Academic, 2001.

Banerji, J.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun., vol. 269, no. 2, pp. 310–314, 2007.

Bhatia, N.

N. Bhatia and J. John, “Single-mode-multimode-multimode device: Sensitivity of the single mode to the fiber parameters and geometrical misalignments,” J. Opt. Soc. Amer. B, vol. 33, no. 2, pp. 211–219, 2016.

Cantrell, C. D.

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Amer. B, vol. 19, no. 12, pp. 2886–2892, 2002.

Chauny, L.-A.

Chung, Y. C.

D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightw. Technol., vol. 27, no. 8, pp. 1018–1026, 2009.

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Amer. B, vol. 27, no. 11, pp. B63–B92, 2010.

Cohen, L. G.

Davies, A. R.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun., vol. 269, no. 2, pp. 310–314, 2007.

El-Rabii, H.

Fermann, M. E.

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J., vol. 51, no. 8, pp. 1767–1783, 1972.

Graf, T.

M. Vogel, M. Abdou Ahmed, A. Voss, D. Kauffmann, and T. Graf, “Full vectorial finite-element simulations of Bragg fibers for single-mode beam delivery systems,” Proc. SPIE vol. 6998, 2008, Art. no. .

Ho, K.-P.

K.-P. Ho and J. M. Kahn, “Mode coupling and its impact on spatially multiplexed systems,” in Optical Fiber Telecommunications. Amsterdam, the Netherlands: Elsevier, 2013, pp. 491–568.

Hollenbeck, D.

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Amer. B, vol. 19, no. 12, pp. 2886–2892, 2002.

Hurand, S.

Jenkins, R. M.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun., vol. 269, no. 2, pp. 310–314, 2007.

John, J.

N. Bhatia and J. John, “Single-mode-multimode-multimode device: Sensitivity of the single mode to the fiber parameters and geometrical misalignments,” J. Opt. Soc. Amer. B, vol. 33, no. 2, pp. 211–219, 2016.

Joshi, S.

Kahn, J. M.

K.-P. Ho and J. M. Kahn, “Mode coupling and its impact on spatially multiplexed systems,” in Optical Fiber Telecommunications. Amsterdam, the Netherlands: Elsevier, 2013, pp. 491–568.

Kauffmann, D.

M. Vogel, M. Abdou Ahmed, A. Voss, D. Kauffmann, and T. Graf, “Full vectorial finite-element simulations of Bragg fibers for single-mode beam delivery systems,” Proc. SPIE vol. 6998, 2008, Art. no. .

Mansuripur, M.

H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightw. Technol., vol. 24, no. 3, pp. 1350–1355, 2006.

Marcuse, D.

H. M. Presby, D. Marcuse, and L. G. Cohen, “Calculation of bandwidth from index profiles of optical fibers. 2: Experiment,” Appl. Opt., vol. 18, no. 19, pp. 3249–3255, 1979.

D. Marcuse, Theory of Dielectric Optical Waveguides. (Quantum Electronics—Principles and Applications), 2nd ed. Boston, MA, USA: Academic, 1991.

Negel, J.-P.

J.-P. Negelet al., “Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber,” Laser Phys. Lett., vol. 11, no. 5, 2014, Art. no. .

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Amer. B, vol. 27, no. 11, pp. B63–B92, 2010.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides. (Optics and Photonics), San Diego, CA, USA: Academic, 2000.

Polynkin, P.

H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightw. Technol., vol. 24, no. 3, pp. 1350–1355, 2006.

Presby, H. M.

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Amer. B, vol. 27, no. 11, pp. B63–B92, 2010.

Shaklan, S.

S. Shaklan, “Measurement of intermodal coupling in weakly multimode fibre optics,” Electron. Lett., vol. 26, no. 24, pp. 2022–2024, 1990.

Sim, D. H.

D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightw. Technol., vol. 27, no. 8, pp. 1018–1026, 2009.

Smith, R. G.

Stacey, C. D.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun., vol. 269, no. 2, pp. 310–314, 2007.

Stolen, R.

R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron., vol. 15, no. 10, pp. 1157–1160, 1979.

Takushima, Y.

D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightw. Technol., vol. 27, no. 8, pp. 1018–1026, 2009.

Vogel, M.

M. Vogel, M. Abdou Ahmed, A. Voss, D. Kauffmann, and T. Graf, “Full vectorial finite-element simulations of Bragg fibers for single-mode beam delivery systems,” Proc. SPIE vol. 6998, 2008, Art. no. .

Voss, A.

M. Abdou Ahmed and A. Voss, “Optical fibres for high-power singlemode beam delivery,” Optik Photonik, vol. 7, no. 2, pp. 38–43, 2012.

M. Vogel, M. Abdou Ahmed, A. Voss, D. Kauffmann, and T. Graf, “Full vectorial finite-element simulations of Bragg fibers for single-mode beam delivery systems,” Proc. SPIE vol. 6998, 2008, Art. no. .

Wielandy, S.

Yalin, A. P.

Yoda, H.

H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightw. Technol., vol. 24, no. 3, pp. 1350–1355, 2006.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J., vol. 51, no. 8, pp. 1767–1783, 1972.

Electron. Lett. (1)

S. Shaklan, “Measurement of intermodal coupling in weakly multimode fibre optics,” Electron. Lett., vol. 26, no. 24, pp. 2022–2024, 1990.

IEEE J. Quant. Electron. (1)

R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron., vol. 15, no. 10, pp. 1157–1160, 1979.

J. Lightw. Technol. (2)

D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightw. Technol., vol. 27, no. 8, pp. 1018–1026, 2009.

H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightw. Technol., vol. 24, no. 3, pp. 1350–1355, 2006.

J. Opt. Soc. Amer. B (3)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Amer. B, vol. 27, no. 11, pp. B63–B92, 2010.

N. Bhatia and J. John, “Single-mode-multimode-multimode device: Sensitivity of the single mode to the fiber parameters and geometrical misalignments,” J. Opt. Soc. Amer. B, vol. 33, no. 2, pp. 211–219, 2016.

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Amer. B, vol. 19, no. 12, pp. 2886–2892, 2002.

Laser Phys. Lett. (1)

J.-P. Negelet al., “Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber,” Laser Phys. Lett., vol. 11, no. 5, 2014, Art. no. .

Lasers and laser-related equipment–Test methods for laser beam widths, divergence angles and beam propagation ratios (1)

Lasers and laser-related equipment–Test methods for laser beam widths, divergence angles and beam propagation ratios, ISO 11146, 2005.

Opt. Commun. (1)

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun., vol. 269, no. 2, pp. 310–314, 2007.

Opt. Express (1)

Opt. Lett. (1)

Optik Photonik (1)

M. Abdou Ahmed and A. Voss, “Optical fibres for high-power singlemode beam delivery,” Optik Photonik, vol. 7, no. 2, pp. 38–43, 2012.

Other (5)

D. Marcuse, Theory of Dielectric Optical Waveguides. (Quantum Electronics—Principles and Applications), 2nd ed. Boston, MA, USA: Academic, 1991.

K.-P. Ho and J. M. Kahn, “Mode coupling and its impact on spatially multiplexed systems,” in Optical Fiber Telecommunications. Amsterdam, the Netherlands: Elsevier, 2013, pp. 491–568.

K. Okamoto, Fundamentals of Optical Waveguides. (Optics and Photonics), San Diego, CA, USA: Academic, 2000.

M. Vogel, M. Abdou Ahmed, A. Voss, D. Kauffmann, and T. Graf, “Full vectorial finite-element simulations of Bragg fibers for single-mode beam delivery systems,” Proc. SPIE vol. 6998, 2008, Art. no. .

G. P. Agrawal, Nonlinear Fiber Optics(Optics and Photonics), 3rd ed. San Diego, CA, USA: Academic, 2001.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.