Abstract

In this paper, a novel single-pixel method for coherent imaging through an endoscopic fiber bundle is presented. The use of a single-pixel detector allows greater sensitivity over a wider range of wavelengths, which could have significant applications in an endoscopic fluorescence microscopy. First, the principle of lensless focussing at the distal end of a coherent fiber bundle is simulated to examine the impact of pixelation at microscopic scales. Next, an experimental optical correlator system using spatial light modulators is presented. A simple contrast imaging method of characterizing and compensating phase aberrations introduced by fiber bundles is described. Experimental results are then presented showing that our phase compensation method enables characterization of the optical phase profile of individual fiberlets. After applying this correction, early results demonstrating the ability of the system to electronically adjust the focal plane at the distal end of the fiber bundle are presented. The structural similarity index between the simulated image and the experimental focus-adjusted image increases noticeably when the phase correction is applied and the retrieved image is visually recognizable. Strategies to improve image quality are discussed.

© 2015 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cancer Incidence in the UK in 2011. (2014, ). Cancer Research U.K., London, U.K., Tech. Rep. CS REPORT INCIDENCE, [Online]. Available: http://publications.cancerresearchuk.org/downloads/Product/CS_REPORT_INCIDENCE.pdf.
  2. A. F. Peeryet al., “Burden of gastrointestinal disease in the United States: 2012 update.” Gastroenterology, vol. 143, no. 5, pp. 1179–1187, 2012.
  3. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett., vol. 18, no. 8, pp. 565–567, 1993.
  4. A. J. Thompsonet al., “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett., vol. 36, no. 9, pp. 1707–1709, 2011.
  5. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun., vol. 3, no. 1027, pp. 1–9, 2012.
  6. M. Plöschneret al., “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Exp., vol. 22, no. 3, pp. 10583–10590, 2014.
  7. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Exp., vol. 21, no. 2, pp. 1656–1668, 2013.
  8. Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2, pp. 61–73, 2014.
  9. T. Xieet al., “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett., vol. 30, no. 14, pp. 1803–1805, 2005.
  10. N. Bozinovicet al., “Fluorescence endomicroscopy with structured illumination,” Opt. Exp., vol. 16, no. 11, pp. 4603–4610, 2008.
  11. J. H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, Lasers Opt., vol. 106, no. 3, pp. 635–643, 2012.
  12. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip, vol. 12, no. 3, pp. 635–639, 2012.
  13. J. A. Carpenter, B. J. Eggleton, and J. Schröder, “110 $\times$ 110 optical mode transfer matrix inversion,” Opt. Exp., vol. 22, no. 1, pp. 96–101, 2014.
  14. G. S. D. Gordonet al. “Coherent, focus-corrected imaging of optical fiber facets using a single-pixel detector,” Opt. Lett., vol. 39, no. 20, pp. 6034–6037, 2014.
  15. G. S. Kaminski-Schierleet al., “In situ measurements of the formation and morphology of intracellular $\beta$-amyloid fibrils by super-resolution fluorescence imaging,” J. Amer. Chem. Soc., vol. 133, no. 33, pp. 12902–12905, 2011.
  16. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.
  17. J. W. Goodman, Introduction to Fourier Optics.Englewood, CO, USA: Roberts & Company, 1996.
  18. Z. Wang, A. C. Bovik., H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.
  19. J. Garcia-Sucerquiaet al., “Digital in-line holographic microscopy,” Appl. Opt., vol. 45, no. 5, pp. 836–850, 2006.

2014 (3)

M. Plöschneret al., “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Exp., vol. 22, no. 3, pp. 10583–10590, 2014.

J. A. Carpenter, B. J. Eggleton, and J. Schröder, “110 $\times$ 110 optical mode transfer matrix inversion,” Opt. Exp., vol. 22, no. 1, pp. 96–101, 2014.

G. S. D. Gordonet al. “Coherent, focus-corrected imaging of optical fiber facets using a single-pixel detector,” Opt. Lett., vol. 39, no. 20, pp. 6034–6037, 2014.

2013 (1)

R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Exp., vol. 21, no. 2, pp. 1656–1668, 2013.

2012 (4)

J. H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, Lasers Opt., vol. 106, no. 3, pp. 635–643, 2012.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip, vol. 12, no. 3, pp. 635–639, 2012.

A. F. Peeryet al., “Burden of gastrointestinal disease in the United States: 2012 update.” Gastroenterology, vol. 143, no. 5, pp. 1179–1187, 2012.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun., vol. 3, no. 1027, pp. 1–9, 2012.

2011 (2)

A. J. Thompsonet al., “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett., vol. 36, no. 9, pp. 1707–1709, 2011.

G. S. Kaminski-Schierleet al., “In situ measurements of the formation and morphology of intracellular $\beta$-amyloid fibrils by super-resolution fluorescence imaging,” J. Amer. Chem. Soc., vol. 133, no. 33, pp. 12902–12905, 2011.

2008 (2)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

N. Bozinovicet al., “Fluorescence endomicroscopy with structured illumination,” Opt. Exp., vol. 16, no. 11, pp. 4603–4610, 2008.

2006 (1)

2005 (1)

2004 (1)

Z. Wang, A. C. Bovik., H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

1993 (1)

Aziz, D.

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip, vol. 12, no. 3, pp. 635–639, 2012.

Bovik., A. C.

Z. Wang, A. C. Bovik., H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

Bozinovic, N.

N. Bozinovicet al., “Fluorescence endomicroscopy with structured illumination,” Opt. Exp., vol. 16, no. 11, pp. 4603–4610, 2008.

Carpenter, J. A.

J. A. Carpenter, B. J. Eggleton, and J. Schröder, “110 $\times$ 110 optical mode transfer matrix inversion,” Opt. Exp., vol. 22, no. 1, pp. 96–101, 2014.

Choi, W.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2, pp. 61–73, 2014.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2, pp. 61–73, 2014.

Choi, Y.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2, pp. 61–73, 2014.

Cižmár, T.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun., vol. 3, no. 1027, pp. 1–9, 2012.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun., vol. 3, no. 1027, pp. 1–9, 2012.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

Eggleton, B. J.

J. A. Carpenter, B. J. Eggleton, and J. Schröder, “110 $\times$ 110 optical mode transfer matrix inversion,” Opt. Exp., vol. 22, no. 1, pp. 96–101, 2014.

Garcia-Sucerquia, J.

Gmitro, A. F.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics.Englewood, CO, USA: Roberts & Company, 1996.

Gordon, G. S. D.

Gu, R. Y.

R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Exp., vol. 21, no. 2, pp. 1656–1668, 2013.

Han, J. H.

J. H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, Lasers Opt., vol. 106, no. 3, pp. 635–643, 2012.

Kahn, J. M.

R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Exp., vol. 21, no. 2, pp. 1656–1668, 2013.

Kaminski-Schierle, G. S.

G. S. Kaminski-Schierleet al., “In situ measurements of the formation and morphology of intracellular $\beta$-amyloid fibrils by super-resolution fluorescence imaging,” J. Amer. Chem. Soc., vol. 133, no. 33, pp. 12902–12905, 2011.

Kang, J. U.

J. H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, Lasers Opt., vol. 106, no. 3, pp. 635–643, 2012.

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

Kim, M.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2, pp. 61–73, 2014.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

Leonardo, R. Di

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip, vol. 12, no. 3, pp. 635–639, 2012.

Mahalati, R. N.

R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Exp., vol. 21, no. 2, pp. 1656–1668, 2013.

Peery, A. F.

A. F. Peeryet al., “Burden of gastrointestinal disease in the United States: 2012 update.” Gastroenterology, vol. 143, no. 5, pp. 1179–1187, 2012.

Plöschner, M.

M. Plöschneret al., “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Exp., vol. 22, no. 3, pp. 10583–10590, 2014.

Schröder, J.

J. A. Carpenter, B. J. Eggleton, and J. Schröder, “110 $\times$ 110 optical mode transfer matrix inversion,” Opt. Exp., vol. 22, no. 1, pp. 96–101, 2014.

Sheikh, H. R.

Z. Wang, A. C. Bovik., H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

Simoncelli, E. P.

Z. Wang, A. C. Bovik., H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

Thompson, A. J.

Wang, Z.

Z. Wang, A. C. Bovik., H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

Xie, T.

Yoon, C.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2, pp. 61–73, 2014.

Appl. Opt. (1)

Appl. Phys. B, Lasers Opt. (1)

J. H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, Lasers Opt., vol. 106, no. 3, pp. 635–643, 2012.

Gastroenterology (1)

A. F. Peeryet al., “Burden of gastrointestinal disease in the United States: 2012 update.” Gastroenterology, vol. 143, no. 5, pp. 1179–1187, 2012.

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008.

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik., H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

J. Amer. Chem. Soc. (1)

G. S. Kaminski-Schierleet al., “In situ measurements of the formation and morphology of intracellular $\beta$-amyloid fibrils by super-resolution fluorescence imaging,” J. Amer. Chem. Soc., vol. 133, no. 33, pp. 12902–12905, 2011.

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip, vol. 12, no. 3, pp. 635–639, 2012.

Nature Commun. (1)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun., vol. 3, no. 1027, pp. 1–9, 2012.

Opt. Exp. (4)

M. Plöschneret al., “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Exp., vol. 22, no. 3, pp. 10583–10590, 2014.

R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Exp., vol. 21, no. 2, pp. 1656–1668, 2013.

J. A. Carpenter, B. J. Eggleton, and J. Schröder, “110 $\times$ 110 optical mode transfer matrix inversion,” Opt. Exp., vol. 22, no. 1, pp. 96–101, 2014.

N. Bozinovicet al., “Fluorescence endomicroscopy with structured illumination,” Opt. Exp., vol. 16, no. 11, pp. 4603–4610, 2008.

Opt. Lett. (4)

Other (3)

J. W. Goodman, Introduction to Fourier Optics.Englewood, CO, USA: Roberts & Company, 1996.

Cancer Incidence in the UK in 2011. (2014, ). Cancer Research U.K., London, U.K., Tech. Rep. CS REPORT INCIDENCE, [Online]. Available: http://publications.cancerresearchuk.org/downloads/Product/CS_REPORT_INCIDENCE.pdf.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2, pp. 61–73, 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.