Abstract

A self-referenced optical fiber refractometer using a ball lens as a sensor head has been developed and characterized. A 350-μm ball lens created at the tip of a single mode fiber has been coated with a 40-nm optically thin layer of palladium that reacts with hydrogen to form a hydride, which has a lower reflectivity than pure palladium. Optical reflectance measurements from the tip of the ball lens were performed to determine the hydrogen response. The change in reflectivity is proportional to the hydrogen concentration in the range 0% to 1% hydrogen in air with a detection limit down to 10 ppm (1σ) in air. This technique offers a simple sensor head arrangement, with a larger sampling area (∼40 times) than a typical single-mode fiber core. A statistical image analysis of a palladium film, with cracks created by accelerated failure, confirms that the anticipated sensor area for a ball lens sensor head has a more predictable reflectivity than that of a bare fiber core.

© 2014 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Dealing with reported gas escapes,” Inst. Gas Eng. Managers, Derbyshire, U.K., Tech. Rep. , 1998.
  2. M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys., vol. 64, pp. 3706–3712, 1988.
  3. D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sensor Actuators B Chem., vol. 136, pp. 562–566, 2009.
  4. J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting, 1994, pp. 235–236.
  5. C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.
  6. M. A. Butler, R. Sanchez, and G. Dulleck, “Fiber optic hydrogen sensor,” Sandia Nat. Lab., Livermore, CA, USA, Tech. Rep. , 1996.
  7. D. Luna-Moreno and D. Monzón-Hernández, “Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci., vol. 253, pp. 8615–8619, 2007.
  8. R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.
  9. R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.
  10. F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy, vol. 21, no. 6, pp. 461–464, 1996.
  11. T. B. Flanagan and W. A. Oates, “The effect of hysteresis on the phase diagram of Pd-H,” J. Less-Common Met., vol. 92, pp. 131–142, 1983.
  12. B. Degamber and G. F. Fernando, “Process monitoring of fiber-reinforced polymer composites,” MRS Bull., vol. 27, pp. 370–380, 2002.
  13. A. Suhadolnik, A. Babnik, and J. Možina, “Optical fiber reflection refractometer,” Sens. Actuators B Chem., vol. 29, pp. 428–432, 1995.
  14. S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.
  15. A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.
  16. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt., vol. 5, pp. 1550–1567, 1996.
  17. D. L. Lee, “Optical fibers” in Electromagnetic Principles of Integrated Optics. New York, NY, USA: Wiley, 1986.
  18. M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sensor Actuators B Chem., vol. 22, pp. 155–163, 1994.
  19. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing. Knoxville, TN, USA: Gatesmark, 2009.
  20. Fujikura Fiber Ball Lens Software, FSM-LZM-100 Ball Lens v2.0. Fujikura AFL Telecommunications, SpliceLab User's Guide Fiber Ball-Lens Software Version 2.0, 2013.
  21. G. A. Frazier and R. Glosser, “Characterization of thin films of the palladium-hydrogen system,” J. Less-Common Met., vol. 74, pp. 89–96, 1980.

2014 (1)

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

2013 (1)

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

2009 (2)

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sensor Actuators B Chem., vol. 136, pp. 562–566, 2009.

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

2007 (2)

D. Luna-Moreno and D. Monzón-Hernández, “Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci., vol. 253, pp. 8615–8619, 2007.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

2006 (1)

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

2002 (1)

B. Degamber and G. F. Fernando, “Process monitoring of fiber-reinforced polymer composites,” MRS Bull., vol. 27, pp. 370–380, 2002.

1996 (2)

F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy, vol. 21, no. 6, pp. 461–464, 1996.

H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt., vol. 5, pp. 1550–1567, 1996.

1995 (1)

A. Suhadolnik, A. Babnik, and J. Možina, “Optical fiber reflection refractometer,” Sens. Actuators B Chem., vol. 29, pp. 428–432, 1995.

1994 (1)

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sensor Actuators B Chem., vol. 22, pp. 155–163, 1994.

1988 (1)

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys., vol. 64, pp. 3706–3712, 1988.

1983 (1)

T. B. Flanagan and W. A. Oates, “The effect of hysteresis on the phase diagram of Pd-H,” J. Less-Common Met., vol. 92, pp. 131–142, 1983.

1980 (1)

G. A. Frazier and R. Glosser, “Characterization of thin films of the palladium-hydrogen system,” J. Less-Common Met., vol. 74, pp. 89–96, 1980.

Allsop, T.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

Babnik, A.

A. Suhadolnik, A. Babnik, and J. Možina, “Optical fiber reflection refractometer,” Sens. Actuators B Chem., vol. 29, pp. 428–432, 1995.

Barton, J. S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

Bennion, I.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

Brooks, S. J.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

Buggy, S. J.

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

Burnell, G.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

Butler, M. A.

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sensor Actuators B Chem., vol. 22, pp. 155–163, 1994.

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys., vol. 64, pp. 3706–3712, 1988.

M. A. Butler, R. Sanchez, and G. Dulleck, “Fiber optic hydrogen sensor,” Sandia Nat. Lab., Livermore, CA, USA, Tech. Rep. , 1996.

Chowdhury, S. A.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

Claus, R. O.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting, 1994, pp. 235–236.

Correia, R.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

Dam, B.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Degamber, B.

B. Degamber and G. F. Fernando, “Process monitoring of fiber-reinforced polymer composites,” MRS Bull., vol. 27, pp. 370–380, 2002.

Dimopoulos, A.

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

Dulleck, G.

M. A. Butler, R. Sanchez, and G. Dulleck, “Fiber optic hydrogen sensor,” Sandia Nat. Lab., Livermore, CA, USA, Tech. Rep. , 1996.

Eddins, S. L.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing. Knoxville, TN, USA: Gatesmark, 2009.

Elshabini-Riad, A.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting, 1994, pp. 235–236.

Fernando, G. F.

B. Degamber and G. F. Fernando, “Process monitoring of fiber-reinforced polymer composites,” MRS Bull., vol. 27, pp. 370–380, 2002.

Flanagan, T. B.

T. B. Flanagan and W. A. Oates, “The effect of hysteresis on the phase diagram of Pd-H,” J. Less-Common Met., vol. 92, pp. 131–142, 1983.

Francis, D.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

Frazier, G. A.

G. A. Frazier and R. Glosser, “Characterization of thin films of the palladium-hydrogen system,” J. Less-Common Met., vol. 74, pp. 89–96, 1980.

Ginley, D. S.

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys., vol. 64, pp. 3706–3712, 1988.

Glosser, R.

G. A. Frazier and R. Glosser, “Characterization of thin films of the palladium-hydrogen system,” J. Less-Common Met., vol. 74, pp. 89–96, 1980.

Gonzalez, R. C.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing. Knoxville, TN, USA: Gatesmark, 2009.

Hodgkinson, J.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

James, S. W.

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

Javahiraly, N.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Jones, B. J. S.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

Jones, J. D. C.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

Kogelnik, H.

Lee, D. L.

D. L. Lee, “Optical fibers” in Electromagnetic Principles of Integrated Optics. New York, NY, USA: Wiley, 1986.

Lewis, F. A.

F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy, vol. 21, no. 6, pp. 461–464, 1996.

Li, T.

Luna-Moreno, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sensor Actuators B Chem., vol. 136, pp. 562–566, 2009.

D. Luna-Moreno and D. Monzón-Hernández, “Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci., vol. 253, pp. 8615–8619, 2007.

Maier, R. R. J.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

Martínez-Escobar, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sensor Actuators B Chem., vol. 136, pp. 562–566, 2009.

McCulloch, S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

Meyrueis, P.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Monzón-Hernández, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sensor Actuators B Chem., vol. 136, pp. 562–566, 2009.

D. Luna-Moreno and D. Monzón-Hernández, “Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci., vol. 253, pp. 8615–8619, 2007.

Možina, J.

A. Suhadolnik, A. Babnik, and J. Možina, “Optical fiber reflection refractometer,” Sens. Actuators B Chem., vol. 29, pp. 428–432, 1995.

Murphy, K. A.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting, 1994, pp. 235–236.

Oates, W. A.

T. B. Flanagan and W. A. Oates, “The effect of hysteresis on the phase diagram of Pd-H,” J. Less-Common Met., vol. 92, pp. 131–142, 1983.

Partridge, I. K.

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

Perrotton, C.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Sanchez, R.

M. A. Butler, R. Sanchez, and G. Dulleck, “Fiber optic hydrogen sensor,” Sandia Nat. Lab., Livermore, CA, USA, Tech. Rep. , 1996.

Schreuders, H.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Skordos, A. A.

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

Slaman, M.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Suhadolnik, A.

A. Suhadolnik, A. Babnik, and J. Možina, “Optical fiber reflection refractometer,” Sens. Actuators B Chem., vol. 29, pp. 428–432, 1995.

Tatam, R. P.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

Thompson, A. W. J.

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

Westerwaal, R. J.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Woods, R. E.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing. Knoxville, TN, USA: Gatesmark, 2009.

Zeakes, J. S.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting, 1994, pp. 235–236.

Appl. Opt. (1)

Appl. Surf. Sci. (1)

D. Luna-Moreno and D. Monzón-Hernández, “Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci., vol. 253, pp. 8615–8619, 2007.

Int. J. Hydrogen Energy (1)

F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy, vol. 21, no. 6, pp. 461–464, 1996.

J. Appl. Phys. (1)

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys., vol. 64, pp. 3706–3712, 1988.

J. Appl. Polym. Sci. (1)

A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer,” J. Appl. Polym. Sci., vol. 113, pp. 730–735, 2009.

J. Less-Common Met. (2)

T. B. Flanagan and W. A. Oates, “The effect of hysteresis on the phase diagram of Pd-H,” J. Less-Common Met., vol. 92, pp. 131–142, 1983.

G. A. Frazier and R. Glosser, “Characterization of thin films of the palladium-hydrogen system,” J. Less-Common Met., vol. 74, pp. 89–96, 1980.

J. Opt. A: Pure Appl. Opt. (1)

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen-sensing,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S45–S59, 2007.

Meas. Sci. Technol. (1)

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, “Palladium-based hydrogen sensing for monitoring of ageing materials,” Meas. Sci. Technol., vol. 17, pp. 1118–1123, 2006.

MRS Bull. (1)

B. Degamber and G. F. Fernando, “Process monitoring of fiber-reinforced polymer composites,” MRS Bull., vol. 27, pp. 370–380, 2002.

Opt. Exp. (1)

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Exp., vol. 21, pp. 382–390, 2013.

Proc. SPIE (1)

S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. S. Jones, A. W. J. Thompson, J. Hodgkinson, and R. P. Tatam, “Palladium coated ball lens for optical fibre refractometry based hydrogen sensing,” Proc. SPIE, vol. 9157, art. no. 9157AP, 2014.

Sens. Actuators B Chem. (1)

A. Suhadolnik, A. Babnik, and J. Možina, “Optical fiber reflection refractometer,” Sens. Actuators B Chem., vol. 29, pp. 428–432, 1995.

Sensor Actuators B Chem. (2)

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sensor Actuators B Chem., vol. 136, pp. 562–566, 2009.

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sensor Actuators B Chem., vol. 22, pp. 155–163, 1994.

Other (6)

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing. Knoxville, TN, USA: Gatesmark, 2009.

Fujikura Fiber Ball Lens Software, FSM-LZM-100 Ball Lens v2.0. Fujikura AFL Telecommunications, SpliceLab User's Guide Fiber Ball-Lens Software Version 2.0, 2013.

D. L. Lee, “Optical fibers” in Electromagnetic Principles of Integrated Optics. New York, NY, USA: Wiley, 1986.

“Dealing with reported gas escapes,” Inst. Gas Eng. Managers, Derbyshire, U.K., Tech. Rep. , 1998.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting, 1994, pp. 235–236.

M. A. Butler, R. Sanchez, and G. Dulleck, “Fiber optic hydrogen sensor,” Sandia Nat. Lab., Livermore, CA, USA, Tech. Rep. , 1996.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.