Abstract

This study presents the recently developed monolithic photonic-integrated circuits that provide efficient amplitude modulation for wavelength division multiplexed optical channels. The circuits were designed for application as a read-out unit in a high-energy physics experiment, and are sufficiently general to be applied in various types of high-speed photonic transmitters. They were constructed using basic building blocks provided in an indium phosphide-based generic integration technology process and fabricated in a multi-project wafer run. Two variants of the circuits, utilizing modulators in Mach–Zehnder and Michelson interferometer configuration, are discussed. A modulation bandwidth of 18.6 GHz was measured and error-free transmission of a 10-Gb/s signal through 85 km of optical fiber was achieved.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription