Abstract

We present and analyze a novel fade mitigation technique that is applicable on outdoor optical wireless systems. Our key idea is to utilize the nonlinear power-dependent gain properties of a semiconductor optical amplifier (SOA) to provide unbalanced amplification between faded and non-faded instances of the optical wireless signal. We analytically demonstrate that this power equalization process smoothes out fade-induced power fluctuations and drastically reduces the probability of the system being in a fade state. In medium to strong turbulence governed by gamma-gamma statistics, our results predict that the fade probability can be reduced by over 80% when the SOA is introduced at the optical wireless receiver. We also show that the duration of remaining fades is reduced by a sizeable percentage, and a percentile reduction of the average fade duration of over 85% can be achieved at the SOA output.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription