Abstract

We developed a high-throughput technique to design photonic crystal fiber (PCF) structures with desired properties and functionalities. By using a genetic algorithm, a high birefringence and an ultra-flattened chromatic dispersion over a large wavelength range are achieved. It is shown that a low confinement loss can be obtained while the birefringence remains the same. The numerical results show that the presented PCF structure can be successfully employed as maintaining polarization devices working in a large zero- chromatic dispersion region.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription