Abstract

All-optical regeneration has attracted growing interest due to the possibility to increase the all-optical reach. However, to be really competitive with optoelectronic regenerators, all-optical regenerators should process an entire wavelength division multiplexed (WDM) signal comb at once and significantly reduce the footprint and the power consumption, as possible, in principle, by exploiting photonic-integrated circuits (PICs). Moreover, since constant envelope modulation format signals have come into play in recent years, all-optical regenerators dealing with a multiplex of these signals are of particular interest. This paper presents a monolithically integrated indium-phosphide-based PIC acting as an all-optical regenerator for constant envelope WDM signals. The regeneration scheme is based on hard-limiting amplification in saturated semiconductor optical amplifiers (SOAs), which removes the signal intensity noise. The presented PIC, designed and fabricated within the JePPIX technology platform, can handle up to four WDM signals, which are demultiplexed and enter an array of SOAs to undergo regeneration before being multiplexed again. The channel-by-channel regeneration of both polarization shift keying and frequency shift keying signals at 10 Gb/s is experimentally demonstrated in terms of Q-factor improvement.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription