Abstract

Abstract—In this paper, a scalable dispersion management approach for microstructured fibers (MSFs) is proposed and applied to the design of zero-dispersion fibers and ultrawideband dispersion-flattened fibers. The proposed method can predict the dispersion of MSFs accurately by taking secondary dispersion into account, this being the interactive contribution from both the material and the geometrical effects. The secondary dispersion is modeled as a function of the propagation index difference and wavelength, and the model can be exploited to predict the secondary dispersion of scaled structures. This method of predicting dispersion is then combined with the scalable property of the geometrical dispersion to form a scalable dispersion-tailoring approach. This new design approach is applied to the design of zero-dispersion MSFs working at 1.55 µm and 1.3 µm, respectively. It is then shown that the method can be used for the design of ultrawideband zero-dispersion fibers. A MSF with predicted dispersion as low as 0.2 ps/(km nm) over the range 1.3–1.6 µm is described.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription