Abstract

In this report, we investigate the fabrication process of 12-fold quasi-photonic crystal microcavity with size-controlled nano-post beneath for electrically-driven structure by fine-tuning the wet-etching time. By finite-element method, we simulate and analyze the heat transfer behaviors of microcavities with different nano-post sizes and shapes. From the real devices, we obtain whispering-gallery (WG) single-mode lasing action with high measured quality factor of 8 250 and low threshold of 0.6 mW when the nano-post size is as large as 830 nm in diameter. By varying the substrate temperature, WG single-mode lasing action is still obtained when the substrate temperature is as high as 70$^{\circ}$C. Besides, the lasing wavelength red-shift rate is also improved compared with the microcavity without nano-post beneath. By varying the pump condition, lasing action is still observed at room temperature when the pump duty cycle increases to 16.0%. Thus, for electrically-driven photonic crystal microcavity lasers, this nano-post can serve as current injection pathway and heat sink at the same time.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription