Abstract

In-band crosstalk can pose important limitations in an all-optical wavelength-division-multiplexed (WDM) network. Recent studies have demonstrated that differential phase shift keying (DPSK), can tolerate higher in-band crosstalk-noise levels compared to amplitude shift keying (ASK). In this paper, the performance of a DPSK receiver, limited by in-band crosstalk noise, is studied theoretically. The model takes into account both the in-band crosstalk noise as well as the amplified-spontaneous-emission (ASE) noise of the optical amplifiers. The model is based on the evaluation of the moment-generating function (MGF) of the decision variable through which, the error probability (EP) can be calculated by applying the saddle point approximation. This provides a rigorous model for the evaluation of the EP of a DPSK receiver in the presence of ASE and in-band crosstalk noises. In the absence of the ASE noise, a closed-form formula for the EP is also given that is useful for estimating the error floor set by the in-band crosstalk noise.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription