Abstract

A novel scheme is presented that can be used to efficiently pump optical waveguide amplifiers. It is based on the coupling between two adjacent waveguides, where pump light is gradually coupled from a nonabsorbing pump waveguide into the amplifier waveguide. The coupling between the waveguides in such a configuration is calculated using an improved coupled mode theory (CMT). The proposed distributed coupling scheme can enhance the optical gain in systems that exhibit a reduced pumping efficiency at high pump power. A numerical example is given for a sensitized neodymium-doped polymer waveguide amplifier, in which the optical gain increases from 0.005 dB to 1.6 dB by changing from conventional butt-coupling to distributed coupling.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription