Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 11,
  • pp. 1221-1227
  • (2023)

Overcoming the Contact Problem in Quantitative Attenuated Total Reflection Spectroscopy Analysis of Flat Samples

Open Access Open Access

Abstract

A method for measuring the optical functions of a flat sample made of homogeneous and isotropic material, using attenuated total reflection spectroscopy when there is poor contact between the sample and the internal reflection element is presented. The approach consists in treating the spacing between the internal reflection element and the sample as an adjustable parameter, along with the dispersion model parameters, in the simultaneous fitting of s- and p-polarized spectra obtained when the gap distance is unknown. The method is tested with both synthetic and experimental (polystyrene) spectra. The results demonstrate the method's ability to accurately determine the optical functions even in the presence of a contact problem.

© 2023 The Author(s)

PDF Article
More Like This
Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Refractive indices of powdered materials using attenuated total reflectance spectroscopy

James B. Gillespie and George H. Goedecke
Appl. Opt. 28(18) 3985-3992 (1989)

Moldable optical element: a new tool to obtain the infrared attenuated-total-reflection spectrum of a rough surface

Alexandre M. Kondyrev and Alexandre E. Tshmel
Appl. Opt. 34(22) 4989-4992 (1995)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.