Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 10,
  • pp. 1173-1180
  • (2023)

Sample Generation Method Based on Variational Modal Decomposition and Generative Adversarial Network (VMD–GAN) for Chemical Oxygen Demand (COD) Detection Using Ultraviolet Visible Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Ultraviolet visible spectroscopy can realize the detection of chemical oxygen demand (COD), especially for low concentration levels due to its high sensitivity, but the issue of insufficient real water sample data has always been a challenge owing to the low probability of occurrence of actual water pollution events. However, in existing methods, generated absorption spectra do not conform to actual situations as the former neglect the actual spectral characteristics. On the other hand, the diversity and complexity are restricted because the information in one-dimensional data is not enough for direct spectral generation. This study proposed a spectral sample generation method based on the variational modal decomposition and generative adversarial network (VMD–GAN). First, the VMD algorithm was utilized to separate principal components and residuals of absorption spectra. Among them, the GAN was used to generate new principal components to ensure that the major spectral characteristics of actual water samples are not lost. The corresponding residuals were then obtained by adjusting the parameters of a three-order Gaussian fitting function, which is more beneficial than the direct use of GAN in the aspect of diversity and complexity. Based on the spectral reconstruction with new principal components and residuals, various absorption spectra were generated more coincident with actual situations. Finally, the effectiveness of this method was evaluated by establishing regression models and predicting COD for actual water samples. In all, the insufficient water sample data can be expanded for a better performance in modeling and analysis of water pollution using the proposed method.

© 2023 The Author(s)

PDF Article
More Like This
Combination of near-infrared spectroscopy with Wasserstein generative adversarial networks for rapidly detecting raw material quality for formula products

Xiaowei Xin, Junhua Jia, Shunpeng Pang, Ruotong Hu, Huili Gong, Xiaoyan Gao, and Xiangqian Ding
Opt. Express 32(4) 5529-5549 (2024)

Data augmentation using continuous conditional generative adversarial networks for regression and its application to improved spectral sensing

Yuhao Zhu, Haoyu Su, Pengsheng Xu, Yuxin Xu, Yujie Wang, Chun-Hua Dong, Jin Lu, Zichun Le, Xiaoniu Yang, Qi Xuan, Chang-Ling Zou, and Hongliang Ren
Opt. Express 31(23) 37722-37739 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.