Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 75,
  • Issue 7,
  • pp. 893-900
  • (2021)

Laser-Induced Breakdown Spectroscopy Combined with Temporal Plasma Analysis of C2 Molecular Emission for Carbon Analysis in Coal

Not Accessible

Your library or personal account may give you access

Abstract

A benchtop laser-induced breakdown spectroscopy is demonstrated to determine the elemental carbon content present in raw coal used for combustion in power plants. The spectral intensities of molecular CN and C2 emission are measured together with the atomic carbon (C) and other inorganic elements (Si, Fe, Mg, Al, Ca, Na, and K) in the laser-induced breakdown spectroscopy spectrum of coal. The emission persistence time of C2 molecule emission is measured from the coal plasma generated by a nanosecond laser ablation with a wavelength of 266 nm in the Ar atmosphere. The emission persistence time of molecular C2 emission along with the spectral intensities of major ash elements (Fe, Si, Al, and Ca) and carbon emissions (atomic C, molecular CN, and C2) shows a better relationship with the carbon wt% of different coal samples. The calibration model to measure elemental carbon (wt%) is developed by combining the spectral characteristics (spectral intensity) and the temporal characteristics (emission persistence time of C2 molecule emission). The temporal characteristic studies combined with the spectroscopic data in the partial least square regression model have resulted in an improvement in the root mean square error of validation, and the relative standard deviation is reduced from 10.8% to 4.1% and from 11.3% to 6.0%, respectively.

© 2021 The Author(s)

PDF Article
More Like This
Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N

Meirong Dong, Jidong Lu, Shunchun Yao, Ziming Zhong, Junyan Li, Jun Li, and Weiye Lu
Opt. Express 19(18) 17021-17029 (2011)

Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study

Kurnia Lahna, Rinaldi Idroes, Nasrullah Idris, Syahrun Nur Abdulmadjid, Koo Hendrik Kurniawan, May On Tjia, Marincan Pardede, and Kiichiro Kagawa
Appl. Opt. 55(7) 1731-1737 (2016)

Determination of boron with molecular emission using laser-induced breakdown spectroscopy combined with laser-induced radical fluorescence

L.B. Guo, Z.H. Zhu, J.M. Li, Y. Tang, S.S Tang, Z.Q. Hao, X.Y. Li, Y.F. Lu, and X.Y. Zeng
Opt. Express 26(3) 2634-2642 (2018)

Supplementary Material (1)

NameDescription
Supplement 1       sj-pdf-1-asp-10.1177_00037028211012399 - Supplemental material for Laser-Induced Breakdown Spectroscopy Combined with Temporal Plasma Analysis of C Molecular Emission for Carbon Analysis in Coal

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.