Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 70,
  • Issue 4,
  • pp. 618-626
  • (2016)

Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System

Not Accessible

Your library or personal account may give you access

Abstract

In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass.

© 2016 The Author(s)

PDF Article
More Like This
Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials

Jinjia Guo, Yuan Lu, Kai Cheng, Jiaojian Song, Wangquan Ye, Nan Li, and Ronger Zheng
Appl. Opt. 56(29) 8196-8200 (2017)

Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy

Qi Zhou, Yuqi Chen, Feifei Peng, Xuejiao Yang, and Runhua Li
Appl. Opt. 52(23) 5600-5605 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.