Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 9,
  • pp. 955-962
  • (2014)

Application of a Spectrum Standardization Method for Carbon Analysis in Coal Using Laser-Induced Breakdown Spectroscopy (LIBS)

Not Accessible

Your library or personal account may give you access

Abstract

Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.

PDF Article
More Like This
Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder

Tingbi Yuan, Zhe Wang, Lizhi Li, Zongyu Hou, Zheng Li, and Weidou Ni
Appl. Opt. 51(7) B22-B29 (2012)

Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples

Krishna K. Ayyalasomayajula, Fang Yu-Yueh, Jagdish P. Singh, Dustin L. McIntyre, and Jinesh Jain
Appl. Opt. 51(7) B149-B154 (2012)

Background removal in soil analysis using laser- induced breakdown spectroscopy combined with standard addition method

R. X. Yi, L. B. Guo, X. H. Zou, J. M. Li, Z. Q. Hao, X. Y. Yang, X. Y. Li, X. Y. Zeng, and Y. F. Lu
Opt. Express 24(3) 2607-2618 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.