Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 58,
  • Issue 12,
  • pp. 1424-1430
  • (2004)

Modeling of Complex Viscosity Changes in the Curing of Epoxy Resins from Near-Infrared Spectroscopy and Multivariate Regression Analysis

Not Accessible

Your library or personal account may give you access

Abstract

The present study investigates the relationship between the changes in complex viscosity and near-infrared spectra. Principal component regression analysis is applied to a near-infrared data set obtained from the<i> in situ</i> monitoring of the curing of diglycidyl ether of bisphenol A with the diamine 4,4'-diaminodiphenylmethane. The values of complex viscosity obtained by dynamic mechanical analysis during the cure process were used as a reference. The near-infrared spectra recorded throughout the reaction, unlike the univariate data analysis at some wavelengths of the spectra, contain a sufficient amount of information to estimate the complex viscosity. The relationship found was high and the results demonstrate the quality of the fitted model. Also, a simple user-friendly procedure for applying the model, focused on the user, is shown.

PDF Article
More Like This
Contactless optoelectronic technique for monitoring epoxy cure

Andrea Cusano, Vincenzo Buonocore, Giovanni Breglio, Antonio Calabrò, Michele Giordano, Antonello Cutolo, and Luigi Nicolais
Appl. Opt. 39(7) 1130-1135 (2000)

Fiber-optic epoxy composite cure sensor. II. Performance characteristics

Kai-Yuen Lam and Martin A. Afromowitz
Appl. Opt. 34(25) 5639-5644 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.