Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 51,
  • Issue 10,
  • pp. 1540-1546
  • (1997)

Calibration of an FT-IR Spectrometer for Ambient Air Monitoring Using PLS

Not Accessible

Your library or personal account may give you access

Abstract

The objective of this work has been to develop a robust calibration method for simultaneous multigas detection with a Fourier transform infrared (FT-IR) system. Calibration models for the identification and quantification of 23 gases in the presence of high concentrations of background gases such as water vapor, carbon dioxide, and methane have been obtained for an FT-IR instrument with 0.7-cm-1 resolution. The calibration models have been tested on a breadboard instrument for trace gas measurement in manned space missions. The results show that FT-IR combined with multivariate methods such as partial least-squares (PLS) and proper pretreatment of the infrared spectra used in calibration is well suited for this purpose. A procedure for baseline drift compensation has been introduced to make the system insensitive to baseline drift and variations in transmittance. This baseline drift compensation also reduces the need for background measurements. Further, a procedure for incorporating a priori information about the instrument signal-to-noise ratio (SNR) and the absorption strength of interfering absorption lines has been developed. Indoor air monitoring and industrial process monitoring are other possible application areas for these techniques. Parts of this work have been performed in a project for the European Space Agency (ESA) in cooperation with Kayser-Threde GmbH and Daimler-Benz Aerospace, Dornier GmbH.

PDF Article
More Like This
Accurate infrared transmittance measurements on optical filters using an FT-IR spectrometer

David A. C. Compton, John Drab, and Howard S. Barr
Appl. Opt. 29(19) 2908-2912 (1990)

Correction of interferogram data acquired using a focal plane FT-IR spectrometer system

Cong Gao, Jianhua Mao, and Ren Chen
Appl. Opt. 57(10) 2434-2440 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.