Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 44,
  • Issue 9,
  • pp. 1577-1579
  • (1990)

Ultralow Detection Limit of a Near-Infrared Dye by Diode-Laser-Induced Fluorescence in a Flowing Stream

Not Accessible

Your library or personal account may give you access

Abstract

Diode lasers are compact, highly efficient, temperature-tunable, long-lived, low-noise, simple-to-operate, and relatively inexpensive solid-state lasers that are rapidly becoming more useful in spectrochemical studies. Recently, Imasaka and Ishibashi reviewed the uses of diode lasers in trace chemical analyses. Due to the virtual elimination of background fluorescence from sample impurities, and the large wavelength shift of the Raman scatter from the solvent at red and near-infrared excitation wavelengths, the rather powerful diode lasers are very useful in laser-induced fluorescence (LIF) detection of very small amounts of red and near-infrared fluorophors. To our knowledge, the lowest detection limit obtained of a fluorescent species with the use of diode laser excitation is 46,000 molecules in a 56-nL volume of the laser dye IR-140 flowing in a liquid jet emanating from a capillary. With some simple improvements upon that system, the detection limit has been lowered to 3000 molecules of IR-140 in a 250-pL volume.

PDF Article
More Like This
Ultrasensitive laser-induced fluorescence detection in hydrodynamically focused flows

Dinh. C. Nguyen, Richard A. Keller, and Mitchell Trkula
J. Opt. Soc. Am. B 4(2) 138-143 (1987)

Semiconductor laser-induced fluorescence detection in picoliter volume flow cells

Anders P. Larson, Henrik Ahlberg, and Staffan Folestad
Appl. Opt. 32(6) 794-805 (1993)

Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser

Fumikazu Taketani, Megumi Kawai, Kenshi Takahashi, and Yutaka Matsumi
Appl. Opt. 46(6) 907-915 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.