Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 40,
  • Issue 3,
  • pp. 303-310
  • (1986)

Near-Infrared Reflectance Determination of Sensory Quality of Peas

Not Accessible

Your library or personal account may give you access

Abstract

Rapid, precise, and relevant methods for predicting the sensory quality of frozen peas were sought. Pea batches chosen to span many different types of quality variations were analyzed by a consumer test, sensory laboratory analysis, and traditional chemical and physical measurements as well as by near-infrared reflectance analysis (NIR). Partial least-squares (PLS) regression was used to reveal the relationships between the different types of measurements. A noise-compensated value, relative ability of prediction (RAP), was used to express the degree of prediction (1.0 = perfect prediction). NIR was found to predict the sensory texture variables (RAP = 0.79) better than the flavor variables (RAP = 0.67). Average consumer preference was less well predicted (RAP = 0.48) by NIR. This was interpretable since NIR gave a better description of the chemical and physical methods relevant for texture (e.g., dry matter (RAP = 0.93)) than the flavor-related variables (e.g., sucrose (RAP = 0.45)) that apparently determine the consumer preference. However, NIR was found to describe the average variation in sensory quality better than the traditional tenderometer value (TV). The highest prediction of sensory variables was obtained by a combination of NIR, TV, and chemical measurements (RAP = 0.87 and 0.80 for texture and flavor variables, respectively). We discuss the predictive validity and the meaning of the present predictive abilities in practice, leading to a conclusion that NIR has a potential for predicting the sensory quality of peas.

PDF Article
More Like This
Nondestructive determination of SSC in an apple by using a portable near-infrared spectroscopy system

Yizhe Zhang, Jipeng Huang, Qiulei Zhang, Jinwei Liu, Yanli Meng, and Yan Yu
Appl. Opt. 61(12) 3419-3428 (2022)

Near Infrared Reflectance of Colored Fruits

Peter J. H. Sharpe and H. N. Barber
Appl. Opt. 11(12) 2902-2906 (1972)

Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.