Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 33,
  • Issue 2,
  • pp. 145-150
  • (1979)

A New Approach to Spatially Resolved Flame Temperature Measurements

Not Accessible

Your library or personal account may give you access

Abstract

Spatially resolved flame temperatures are spectroscopically measured using the slope method, over small (∼0.7 μl), relatively homogenous volumes of flame gases. The spatial resolution is uniquely obtained by introducing Co as a thermometric species into isolated volumes via the use of a droplet injection technique. By this method the emission of light is restricted to a limited volume, whose position in the flame can be accurately determined and controlled. Vertical resolution is determined by the width of the entrance slit of the monochromator employed (100 μm in this study), and horizontal resolution is limited by the width of the emission cloud formed by the injected droplets (1 to 3 mm). The possibility of self-absorption effects are greatly reduced because of the short radiation path length involved. The performance of the method is illustrated by its application to the spatial temperature mapping of the secondary reaction zone of a cylindrical air-acetylene flame. The effects of N<sub>2</sub> as a sheathing gas and flame stoichiometry on the radial and vertical temperature distribution of the flame are also investigated. It is determined that a large, virtually isothermal, central zone exists in the flame.

PDF Article
More Like This
Spatially resolved multispecies and temperature analysis in hydrogen flames

Wolfgang Reckers, Lutz Hüwel, Gerd Grünefeld, and Peter Andresen
Appl. Opt. 32(6) 907-918 (1993)

Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array detection

M. Aldén, P. Grafstrom, H. Lundberg, and S. Svanberg
Opt. Lett. 8(5) 241-243 (1983)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.