Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]
G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]
P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]
A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]
V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]
Y. Sung, “Snapshot holographic optical tomography,” Phys. Rev. Appl. 11, 14039 (2019).
[Crossref]
N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]
Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]
L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]
A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]
Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]
S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
[Crossref]
G. Dardikman and N. T. Shaked, “Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?” J. Opt. Soc. Am. A 36, A1–A11 (2019).
[Crossref]
B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]
Y. Baek, K. Lee, S. Shin, and Y. Park, “Kramers–Kronig holographic imaging for high-space-bandwidth product,” Optica 6, 45–51 (2019).
[Crossref]
M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]
J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
[Crossref]
K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]
H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
[Crossref]
B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]
V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]
N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]
Z. Ren, Z. Xu, and E. Y. Lam, “Learning-based nonparametric autofocusing for digital holography,” Optica 5, 337–344 (2018).
[Crossref]
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]
L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]
T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]
S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]
T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]
N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]
B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]
Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]
H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).
[Crossref]
Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]
D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
S. Li, J. Ma, C. Chang, S. Nie, S. Feng, and C. Yuan, “Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination,” Opt. Express 26, 23572–23584 (2018).
[Crossref]
N. Karasawa, “Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts,” Opt. Commun. 413, 19–23 (2018).
[Crossref]
Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]
G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
[Crossref]
M. M. Sreelal, R. V. Vinu, and R. K. Singh, “Jones matrix microscopy from a single-shot intensity measurement,” Opt. Lett. 42, 5194–5197 (2017).
[Crossref]
X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]
M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]
G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]
A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42, 1492–1495 (2017).
[Crossref]
Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]
D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]
R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]
B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24, 10326–10344 (2016).
[Crossref]
D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]
W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]
L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]
K. Jaferzadeh, S. Gholami, and I. Moon, “Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging,” Appl. Opt. 55, 10409–10416 (2016).
[Crossref]
F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]
E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]
P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]
K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
[Crossref]
P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
[Crossref]
J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]
A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]
P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]
T. Ling, D. Liu, X. Yue, Y. Yang, Y. Shen, and J. Bai, “Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating,” Opt. Lett. 40, 2245–2248 (2015).
[Crossref]
S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]
R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]
J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]
M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]
Y. Li, W. Xiao, and F. Pan, “Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy,” Appl. Opt. 53, 979–987 (2014).
[Crossref]
M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]
T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]
P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
[Crossref]
P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]
I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]
K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]
K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]
V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]
X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
[Crossref]
P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
[Crossref]
B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]
A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]
L. Chen, N. Andrews, S. Kumar, P. Frankel, J. McGinty, and P. M. W. French, “Simultaneous angular multiplexing optical projection tomography at shifted focal planes,” Opt. Lett. 38, 851–853 (2013).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
[Crossref]
A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
H. Gabai, M. Baranes-Zeevi, M. Zilberman, and N. T. Shaked, “Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry,” Opt. Lett. 38, 3017–3020 (2013).
[Crossref]
P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
W. Pan, “Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram,” Opt. Commun. 286, 117–122 (2013).
[Crossref]
J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]
D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]
Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
[Crossref]
N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]
B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref]
T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]
H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20, 26906–26912 (2012).
[Crossref]
N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]
V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]
Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
[Crossref]
E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]
L. Li, X. Wang, and H. Zhai, “Single-shot diagnostic for the three-dimensional field distribution of a terahertz pulse based on pulsed digital holography,” Opt. Lett. 36, 2737–2739 (2011).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]
A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]
C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2, 987–995 (2011).
[Crossref]
R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]
C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]
M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]
C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express 18, 3023–3034 (2010).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18, 19867–19875 (2010).
[Crossref]
P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
[Crossref]
M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]
Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]
M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–51 (2010).
[Crossref]
N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]
C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]
J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]
E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted tomographic diffractive microscopy with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010).
[Crossref]
P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]
M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]
L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]
P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]
N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]
V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]
Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]
A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[Crossref]
A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[Crossref]
C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[Crossref]
L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
X. Wang and H. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Opt. Commun. 275, 42–45 (2007).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]
I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975–983 (2006).
[Crossref]
X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
[Crossref]
Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
[Crossref]
T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]
T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]
S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]
J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
[Crossref]
P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003).
[Crossref]
C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]
O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
[Crossref]
T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
[Crossref]
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]
S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
[Crossref]
P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
S. Suzuki, Y. Nozaki, and H. Kimura, “High-speed holographic microscopy for fast-propagating cracks in transparent materials,” Appl. Opt. 36, 7224–7233 (1997).
[Crossref]
A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
[Crossref]
I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref]
M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[Crossref]
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
[Crossref]
T. Sato, M. Ueda, and T. Ikeda, “Real time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
[Crossref]
E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]
W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1471 (1966).
[Crossref]
E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
[Crossref]
A. B. Porter, “XII. On the diffraction theory of microscopic vision,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 11, 154–166 (1906).
[Crossref]
L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]
Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]
E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: IV. Das optische Vermögen des Mikroskops,” Arch. für mikroskopische Anat. 9, 413–468 (1873).
[Crossref]
E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: IV. Das optische Vermögen des Mikroskops,” Arch. für mikroskopische Anat. 9, 413–468 (1873).
[Crossref]
D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]
A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]
C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]
P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]
A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]
Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]
G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 21–62.
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]
Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]
S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]
P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]
A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
J. J. Cargille, Immersion Oil and the Microscope (New York Microscopical Society Yearbook, 1964).
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]
Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]
H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.
Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]
E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
G. Dardikman and N. T. Shaked, “Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?” J. Opt. Soc. Am. A 36, A1–A11 (2019).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]
M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]
G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]
N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]
T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]
S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]
T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18, 19867–19875 (2010).
[Crossref]
A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]
E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]
C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]
N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]
Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
[Crossref]
P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
[Crossref]
J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]
J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]
F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]
S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]
E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]
T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]
M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]
P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]
M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]
P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]
V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]
A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]
A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]
M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]
P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]
P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]
P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]
L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
K. Franke, “Tomographic apparatus for producing transverse layer images,” U.S. patent4,150,293 (17April1979).
T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
[Crossref]
O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]
P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]
I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]
R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]
Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]
A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]
A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]
Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]
V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]
L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]
V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]
L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]
V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
[Crossref]
P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]
I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]
P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
[Crossref]
P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
[Crossref]
P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]
C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]
L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]
L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]
L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]
J. Primot and N. Guérineau, “Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000).
[Crossref]
X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]
Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
[Crossref]
B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]
Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]
B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]
B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]
R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]
Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]
N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]
T. Sato, M. Ueda, and T. Ikeda, “Real time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]
M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]
Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
[Crossref]
Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
[Crossref]
S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]
A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]
V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]
P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]
A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
[Crossref]
T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
[Crossref]
O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]
B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]
J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]
M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]
N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]
N. Karasawa, “Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts,” Opt. Commun. 413, 19–23 (2018).
[Crossref]
A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[Crossref]
A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[Crossref]
D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]
M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]
K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]
K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
[Crossref]
K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[Crossref]
A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[Crossref]
M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–51 (2010).
[Crossref]
J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
[Crossref]
M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]
J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]
C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]
J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]
J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]
M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]
E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]
A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]
W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]
A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]
A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]
W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]
A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]
A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]
M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]
P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]
E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]
A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]
A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]
W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]
A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]
A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]
V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]
Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]
H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.
Y. Baek, K. Lee, S. Shin, and Y. Park, “Kramers–Kronig holographic imaging for high-space-bandwidth product,” Optica 6, 45–51 (2019).
[Crossref]
K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]
V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]
P. C. Sun and E. N. Leith, “Superresolution by spatial–temporal encoding methods,” Appl. Opt. 31, 4857–4862 (1992).
[Crossref]
E. N. Leith, “Small-aperture, high-resolution, two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
[Crossref]
E. N. Leith, D. Angell, and C. P. Kuei, “Superresolution by incoherent-to-coherent conversion,” J. Opt. Soc. Am. A 4, 1050–1054 (1987).
[Crossref]
E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]
Y. Li, W. Xiao, and F. Pan, “Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy,” Appl. Opt. 53, 979–987 (2014).
[Crossref]
Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]
H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.
C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]
X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]
B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]
X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
[Crossref]
Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
[Crossref]
C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]
J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]
T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]
T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]
T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]
M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[Crossref]
P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]
Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]
N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
S. Li, J. Ma, C. Chang, S. Nie, S. Feng, and C. Yuan, “Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination,” Opt. Express 26, 23572–23584 (2018).
[Crossref]
C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]
A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]
E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]
M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]
P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]
P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]
V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]
V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]
J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
[Crossref]
L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]
A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]
A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]
L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]
L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]
V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]
Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
[Crossref]
M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]
G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]
S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]
P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]
A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
[Crossref]
T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
[Crossref]
O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.
P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]
C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]
A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]
Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]
G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]
T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]
W. Pan, “Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram,” Opt. Commun. 286, 117–122 (2013).
[Crossref]
B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]
Y. Baek, K. Lee, S. Shin, and Y. Park, “Kramers–Kronig holographic imaging for high-space-bandwidth product,” Optica 6, 45–51 (2019).
[Crossref]
Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]
K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]
K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
[Crossref]
K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
[Crossref]
Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
[Crossref]
Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
[Crossref]
Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]
K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]
K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]
K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1–108.
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]
P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]
M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]
P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]
M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]
P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]
C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]
N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]
Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]
C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]
A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]
S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
[Crossref]
F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
[Crossref]
P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
[Crossref]
P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003).
[Crossref]
M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]
K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]
Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]
R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]
B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref]
C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]
Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]
T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]
A. B. Porter, “XII. On the diffraction theory of microscopic vision,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 11, 154–166 (1906).
[Crossref]
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]
J. Primot and N. Guérineau, “Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000).
[Crossref]
D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
[Crossref]
G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 21–62.
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]
H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]
M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]
N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]
S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]
E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]
T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18, 19867–19875 (2010).
[Crossref]
A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]
S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
T. Sato, M. Ueda, and T. Ikeda, “Real time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
[Crossref]
T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
[Crossref]
M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
[Crossref]
M. Ueda and T. Sato, “Superresolution by holography,” J. Opt. Soc. Am. 61, 418–419 (1971).
[Crossref]
N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]
K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]
B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]
E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]
Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]
G. Dardikman and N. T. Shaked, “Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?” J. Opt. Soc. Am. A 36, A1–A11 (2019).
[Crossref]
S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
[Crossref]
N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]
N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]
L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]
G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]
Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]
G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]
M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]
A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42, 1492–1495 (2017).
[Crossref]
D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]
R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]
P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]
P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
[Crossref]
P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
[Crossref]
P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
[Crossref]
I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]
H. Gabai, M. Baranes-Zeevi, M. Zilberman, and N. T. Shaked, “Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry,” Opt. Lett. 38, 3017–3020 (2013).
[Crossref]
P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]
N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]
H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20, 26906–26912 (2012).
[Crossref]
M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]
N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]
N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]
H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]
B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]
C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
Y. Baek, K. Lee, S. Shin, and Y. Park, “Kramers–Kronig holographic imaging for high-space-bandwidth product,” Optica 6, 45–51 (2019).
[Crossref]
K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]
E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.
A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[Crossref]
S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]
L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]
A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]
Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]
G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]
H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).
[Crossref]
C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]
K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]
T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]
T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]
Y. Sung, “Snapshot holographic optical tomography,” Phys. Rev. Appl. 11, 14039 (2019).
[Crossref]
P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]
B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]
B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]
M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]
M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]
J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]
K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]
V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]
Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]
H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]
L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]
N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]
N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]
G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]
M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]
D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
T. Sato, M. Ueda, and T. Ikeda, “Real time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
[Crossref]
T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
[Crossref]
M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
[Crossref]
M. Ueda and T. Sato, “Superresolution by holography,” J. Opt. Soc. Am. 61, 418–419 (1971).
[Crossref]
C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
[Crossref]
R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
[Crossref]
J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]
L. Li, X. Wang, and H. Zhai, “Single-shot diagnostic for the three-dimensional field distribution of a terahertz pulse based on pulsed digital holography,” Opt. Lett. 36, 2737–2739 (2011).
[Crossref]
X. Wang and H. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Opt. Commun. 275, 42–45 (2007).
[Crossref]
X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
[Crossref]
Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]
C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]
P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]
M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]
N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]
F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]
T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]
L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2, 987–995 (2011).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]
Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]
X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]
D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
T. Ling, D. Liu, X. Yue, Y. Yang, Y. Shen, and J. Bai, “Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating,” Opt. Lett. 40, 2245–2248 (2015).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]
P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]
N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]
S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]
S. Li, J. Ma, C. Chang, S. Nie, S. Feng, and C. Yuan, “Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination,” Opt. Express 26, 23572–23584 (2018).
[Crossref]
C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]
C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]
Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]
L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]
V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]
A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]
A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]
L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]
L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]
V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]
Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]
V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]
Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).
N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]
M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]
A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]
D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]
L. Li, X. Wang, and H. Zhai, “Single-shot diagnostic for the three-dimensional field distribution of a terahertz pulse based on pulsed digital holography,” Opt. Lett. 36, 2737–2739 (2011).
[Crossref]
C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]
X. Wang and H. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Opt. Commun. 275, 42–45 (2007).
[Crossref]
X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
[Crossref]
T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]
T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]
Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]
D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]
J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]
J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]
V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]
Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]
D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]
C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]
T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]
T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]
A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]
V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]
P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]
V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]
C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]
C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]
E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
[Crossref]
S. Suzuki, Y. Nozaki, and H. Kimura, “High-speed holographic microscopy for fast-propagating cracks in transparent materials,” Appl. Opt. 36, 7224–7233 (1997).
[Crossref]
Y. Ohtsuka and K. Oka, “Contour mapping of the spatiotemporal state of polarization of light,” Appl. Opt. 33, 2633–2636 (1994).
[Crossref]
T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
[Crossref]
T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]
T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]
K. Jaferzadeh, S. Gholami, and I. Moon, “Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging,” Appl. Opt. 55, 10409–10416 (2016).
[Crossref]
T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
[Crossref]
T. Sato, M. Ueda, and T. Ikeda, “Real time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
[Crossref]
P. C. Sun and E. N. Leith, “Superresolution by spatial–temporal encoding methods,” Appl. Opt. 31, 4857–4862 (1992).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]
F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]
Y. Li, W. Xiao, and F. Pan, “Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy,” Appl. Opt. 53, 979–987 (2014).
[Crossref]
C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
[Crossref]
A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[Crossref]
P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
[Crossref]
S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
[Crossref]
P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003).
[Crossref]
A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4, 1667–1668 (1965).
[Crossref]
E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]
J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]
O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]
I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975–983 (2006).
[Crossref]
S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt. 10, 1575–1580 (1971).
[Crossref]
J. Primot and N. Guérineau, “Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000).
[Crossref]
T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]
S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]
N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]
C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]
E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: IV. Das optische Vermögen des Mikroskops,” Arch. für mikroskopische Anat. 9, 413–468 (1873).
[Crossref]
L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2, 987–995 (2011).
[Crossref]
G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]
A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[Crossref]
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]
B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]
P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]
D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]
A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]
M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[Crossref]
B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]
M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]
B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]
T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]
B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]
R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]
P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]
M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]
P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]
A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]
M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]
A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]
C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]
M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]
V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]
E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]
Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]
S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]
C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]
W. T. Cathey, B. R. Frieden, W. T. Rhodes, and C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am. A 1, 241–250 (1984).
[Crossref]
A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
[Crossref]
E. N. Leith, D. Angell, and C. P. Kuei, “Superresolution by incoherent-to-coherent conversion,” J. Opt. Soc. Am. A 4, 1050–1054 (1987).
[Crossref]
V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]
C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]
G. Dardikman and N. T. Shaked, “Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?” J. Opt. Soc. Am. A 36, A1–A11 (2019).
[Crossref]
A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]
F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]
T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]
Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]
P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
[Crossref]
F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]
C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]
L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]
A. B. Porter, “XII. On the diffraction theory of microscopic vision,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 11, 154–166 (1906).
[Crossref]
G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]
Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]
K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]
R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]
M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
[Crossref]
J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]
D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]
W. Pan, “Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram,” Opt. Commun. 286, 117–122 (2013).
[Crossref]
T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]
A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[Crossref]
D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]
E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]
J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]
N. Karasawa, “Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts,” Opt. Commun. 413, 19–23 (2018).
[Crossref]
N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]
X. Wang and H. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Opt. Commun. 275, 42–45 (2007).
[Crossref]
T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]
R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]
M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]
T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18, 19867–19875 (2010).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]
P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]
S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]
C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express 18, 3023–3034 (2010).
[Crossref]
P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]
A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[Crossref]
A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]
P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]
Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
[Crossref]
V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]
T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]
C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[Crossref]
K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]
N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]
B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24, 10326–10344 (2016).
[Crossref]
L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]
V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]
A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]
N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]
G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]
J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
[Crossref]
H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20, 26906–26912 (2012).
[Crossref]
P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]
L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]
H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).
[Crossref]
J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]
S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
[Crossref]
Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]
B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]
P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
[Crossref]
A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
[Crossref]
Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
[Crossref]
X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]
G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]
Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]
J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]
P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]
K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
[Crossref]
D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]
W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]
L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]
S. Li, J. Ma, C. Chang, S. Nie, S. Feng, and C. Yuan, “Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination,” Opt. Express 26, 23572–23584 (2018).
[Crossref]
L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]
J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]
A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]
Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]
J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
[Crossref]
S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]
N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]
I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]
H. Gabai, M. Baranes-Zeevi, M. Zilberman, and N. T. Shaked, “Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry,” Opt. Lett. 38, 3017–3020 (2013).
[Crossref]
A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42, 1492–1495 (2017).
[Crossref]
D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]
M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]
I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]
T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]
T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]
N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]
V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]
T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]
T. Ling, D. Liu, X. Yue, Y. Yang, Y. Shen, and J. Bai, “Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating,” Opt. Lett. 40, 2245–2248 (2015).
[Crossref]
S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]
N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]
M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]
L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]
E. N. Leith, “Small-aperture, high-resolution, two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
[Crossref]
Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]
B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]
B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref]
N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]
J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
[Crossref]
M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]
P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]
K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]
P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
[Crossref]
L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]
M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]
T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]
P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
[Crossref]
P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]
M. M. Sreelal, R. V. Vinu, and R. K. Singh, “Jones matrix microscopy from a single-shot intensity measurement,” Opt. Lett. 42, 5194–5197 (2017).
[Crossref]
L. Li, X. Wang, and H. Zhai, “Single-shot diagnostic for the three-dimensional field distribution of a terahertz pulse based on pulsed digital holography,” Opt. Lett. 36, 2737–2739 (2011).
[Crossref]
Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]
X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]
Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]
Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
[Crossref]
X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
[Crossref]
L. Chen, N. Andrews, S. Kumar, P. Frankel, J. McGinty, and P. M. W. French, “Simultaneous angular multiplexing optical projection tomography at shifted focal planes,” Opt. Lett. 38, 851–853 (2013).
[Crossref]
E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted tomographic diffractive microscopy with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010).
[Crossref]
K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]
M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]
A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]
C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]
J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]
M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]
F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]
B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]
K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
[Crossref]
S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
[Crossref]
G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]
Z. Ren, Z. Xu, and E. Y. Lam, “Learning-based nonparametric autofocusing for digital holography,” Optica 5, 337–344 (2018).
[Crossref]
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]
H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
[Crossref]
Y. Baek, K. Lee, S. Shin, and Y. Park, “Kramers–Kronig holographic imaging for high-space-bandwidth product,” Optica 6, 45–51 (2019).
[Crossref]
E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]
Y. Sung, “Snapshot holographic optical tomography,” Phys. Rev. Appl. 11, 14039 (2019).
[Crossref]
Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]
Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]
T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]
J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]
S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]
K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]
B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]
Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]
A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]
M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]
F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]
H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]
P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]
V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]
E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]
M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–51 (2010).
[Crossref]
M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
J. J. Cargille, Immersion Oil and the Microscope (New York Microscopical Society Yearbook, 1964).
M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).
K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1–108.
D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.
K. Franke, “Tomographic apparatus for producing transverse layer images,” U.S. patent4,150,293 (17April1979).
H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.
G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 21–62.