Abstract

We review advances in Computational Imaging that have occurred since the mid-1990s. The advent of highly integrated platforms, such as the smartphone, has made the linkage between optics and processing intimate and natural. This review covers key technological developments and insights over the past two decades and examines current trends to predict future capabilities.

Full Article  |  PDF Article
OSA Recommended Articles
Computational ghost imaging for remote sensing

Baris I. Erkmen
J. Opt. Soc. Am. A 29(5) 782-789 (2012)

Computational microscopy in embryo imaging

Joseph L. Hollmann, Andrew K. Dunn, and Charles A. DiMarzio
Opt. Lett. 29(19) 2267-2269 (2004)

Computational LADAR imaging

Arthita Ghosh, Michael A. Powers, and Vishal M. Patel
Appl. Opt. 56(3) B191-B197 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Mait, “A history of imaging: revisiting the past to chart the future,” Opt. Photon. News 17(2), 22–27 (2006).
    [Crossref]
  2. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2003).
  3. R. Raskar, “Computational photography,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics, Technical Digest (2009), paper CTuA1.
  4. C. Zhou and S. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20, 3322–3340 (2011).
    [Crossref]
  5. J. Schwartzman, “Advanced imaging used in cinematography,” https://www.osa.org/en-us/media_library/plenary_keynote_sessions/ .
  6. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv für mikroskopische Anatomie 9, 413–418 (1873).
    [Crossref]
  7. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
    [Crossref]
  8. G. T. di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–501 (1955).
    [Crossref]
  9. E. H. Linfoot, “On resolving power and information,” J. Opt. Soc. Am. 46, 72 (1956).
    [Crossref]
  10. G. T. di Francia, “On resolving power and information,” J. Opt. Soc. Am. 46, 72 (1956).
    [Crossref]
  11. D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
    [Crossref]
  12. G. T. di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–804 (1969).
    [Crossref]
  13. P.-M. Duffieux, L’intégrale de fourier et ses applications à l’optique (1946). Privately published by Oberthur in Rennes.
  14. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  15. L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6, 386–400 (1960).
    [Crossref]
  16. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [Crossref]
  17. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [Crossref]
  18. W. S. Boyle and G. E. Smith, “Information storage devices,” U.S. patent3,858,232 (December31, 1974).
  19. M. F. Tompsett, “Charge transfer imaging devices,” U.S. patent4,085,456 (April19, 1978).
  20. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).
  21. Intel, “The story of the Intel 4004—Intel’s first microprocessor: its invention, introduction, and lasting influence,” https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html .
  22. R. A. Athale, G. W. Euliss, and J. N. Mait, “Computation imaging: old wine in new bottles?” in Frontiers in Optics (Optical Society of America, 2006), paper FWH2.
  23. W. T. Cathey, B. R. Frieden, W. T. Rhodes, and C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am. A 1, 241–250 (1984).
    [Crossref]
  24. R. M. Matic and J. W. Goodman, “Optimal pupil screen design for the estimation of partially coherent images,” J. Opt. Soc. Am. A 4, 2213–2227 (1987).
    [Crossref]
  25. R. M. Matic and J. W. Goodman, “Comparison of optical predetection processing and postdetection linear processing for partially coherent image estimation,” J. Opt. Soc. Am. A 6, 213–228 (1989).
    [Crossref]
  26. R. M. Matic and J. W. Goodman, “Optical preprocessing for increased system throughput,” J. Opt. Soc. Am. A 6, 428–440 (1989).
    [Crossref]
  27. W. Veldkamp, “Wireless focal planes ‘on the road to amacronic sensors’,” IEEE J. Quantum Electron. 29, 801–813 (1993).
    [Crossref]
  28. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
    [Crossref]
  29. J. van der Gracht, E. R. Dowski, W. T. Cathey, and J. P. Bowen, “Aspheric optical elements for extended depth-of-field imaging,” Proc. SPIE 2537, 279–288 (1995).
    [Crossref]
  30. J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996).
    [Crossref]
  31. M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817–4826 (1995).
    [Crossref]
  32. M. A. Neifeld, “Information, resolution, and space-bandwidth product,” Opt. Lett. 23, 1477–1479 (1998).
    [Crossref]
  33. D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
    [Crossref]
  34. F. O. Huck, C. L. Fales, and Z.-U. Rahman, “An information theory of visual communication,” Philos. Trans. R. Soc. London A 354, 2193–2248 (1996).
    [Crossref]
  35. J. N. Mait, U.S. Army Workshop on Integrated Imaging, Research Triangle Park, December17, 1999.
  36. OSA Topical Meeting on Integrated Image Gathering and Processing, Albuquerque, New Mexico, Optical Society of America, 2001.
  37. J. N. Mait, R. Athale, and J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Express 11, 2093–2101 (2003).
    [Crossref]
  38. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).
    [Crossref]
  39. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
    [Crossref]
  40. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref]
  41. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
    [Crossref]
  42. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  43. W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
    [Crossref]
  44. H. Bartelt, S. K. Case, and R. Hauck, “Incoherent-optical processing,” in Applications of Optical Fourier Transforms, H. Stark, ed. (Academic, 1982), pp. 499–536.
  45. A. W. Lohmann and W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1141–1151 (1978).
    [Crossref]
  46. J. R. Fienup, “Phase retrieval for the Hubble Space Telescope using iterative propagation algorithms,” Proc. SPIE 1567, 327–332 (1991).
    [Crossref]
  47. H. Andrews and B. Hunt, Digital Image Restoration (Prentice-Hall, 1977).
  48. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
    [Crossref]
  49. E. Y. Lam and J. W. Goodman, “Iterative statistical approach to blind image deconvolution,” J. Opt. Soc. Am. A 17, 1177–1184 (2000).
    [Crossref]
  50. G. A. Farulla, M. Indaco, D. Rolfo, L. O. Russo, and P. Trotta, “Evaluation of image deblurring algorithms for real-time applications,” in 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (2014).
  51. J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye principle,” Opt. Express 11, 3605–3611 (2003).
    [Crossref]
  52. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
    [Crossref]
  53. G. Kim, K. Isaacson, R. Palmer, and R. Menon, “Lensless photography with only an image sensor,” Appl. Opt. 56, 6450–6456 (2017).
    [Crossref]
  54. G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper CTu3B.2.
  55. H. B. Wach, E. R. Dowski, and W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37, 5359–5367 (1998).
    [Crossref]
  56. K. S. Kubala, E. R. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102–2108 (2003).
    [Crossref]
  57. E. R. Dowski and K. S. Kubala, “Design and optimization of computational imaging systems,” Proc. SPIE 5299, 155–162 (2004).
    [Crossref]
  58. K. S. Kubala, E. R. Dowski, J. Kobus, and R. Brown, “Design and optimization of aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54–65 (2004).
    [Crossref]
  59. D. G. Stork and M. D. Robinson, “Theoretical foundations for joint digital-optical analysis of electro-optical imaging systems,” Appl. Opt. 47, B64–B75 (2008).
    [Crossref]
  60. M. D. Robinson and D. G. Stork, “Joint digital-optical design of superresolution multiframe imaging systems,” Appl. Opt. 47, B11–B20 (2008).
    [Crossref]
  61. J. N. Mait, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Millimeter wave imaging with engineered point spread functions,” Opt. Eng. 51, 091606 (2012).
    [Crossref]
  62. O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28, 2540–2553 (2011).
    [Crossref]
  63. O. S. Cossairt, M. Gupta, and S. K. Nayar, “When does computational imaging improve performance?” IEEE Trans. Image Process. 22, 447–458 (2013).
    [Crossref]
  64. M. Gupta, O. S. Cossairt, and A. Veeraraghavan, “A framework for analysis of computational imaging systems: role of signal prior, sensor noise and multiplexing,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 1909–1921 (2014).
    [Crossref]
  65. Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” London Edinb. Dublin Philos. Mag. J. Sci. 8, 261–274 (1879).
    [Crossref]
  66. Lord Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London Edinb. Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
    [Crossref]
  67. A. W. Lohmann, “The space–bandwidth product, applied to spatial filtering and holography,” (IBM San Jose Research Laboratory, 1967).
  68. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, C. Ferreira, and Z. Zalevsky, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [Crossref]
  69. S. K. Park and R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” Proc. SPIE 1961, 2–13 (1993).
    [Crossref]
  70. D. E. Marshall, “Focal plane array design for optimum system performance,” Infrared Imaging Syst. Technol. 226, 66–73 (1980).
    [Crossref]
  71. P. Fellgett and E. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
    [Crossref]
  72. B. R. Frieden, “Information, and the restorability of images,” J. Opt. Soc. Am. 60, 575–576 (1970).
    [Crossref]
  73. C. L. Fales, F. O. Huck, and R. W. Samms, “Imaging system design for improved information capacity,” Appl. Opt. 23, 872–888 (1984).
    [Crossref]
  74. F. O. Huck, N. Halyo, K. Stacy, R. W. Samms, and C. L. Fales, “Image gathering and processing: information and fidelity,” J. Opt. Soc. Am. A 2, 1644–1666 (1985).
    [Crossref]
  75. F. O. Huck, J. A. McCormick, S. K. Park, and C. L. Fales, “Image-gathering system design for information and fidelity,” J. Opt. Soc. Am. A 5, 285–299 (1988).
    [Crossref]
  76. W.-C. Chou, M. A. Neifeld, and R. Xuan, “Information-based optical design for binary-valued imagery,” Appl. Opt. 39, 1731–1742 (2000).
    [Crossref]
  77. G. W. Euliss and J. van der Gracht, “Information-theoretic analyses of a birefringent blur filter,” Appl. Opt. 40, 6492–6504 (2001).
    [Crossref]
  78. J. N. Mait, J. van der Gracht, and G. W. Euliss, “Design of a diffractive anti-aliasing filter using information density,” Proc. SPIE 4736, 107–115 (2002).
    [Crossref]
  79. B. R. Frieden, Science from Fisher Information: a Unification (Cambridge University, 2004).
  80. H. H. Barrett, J. Denny, R. F. Wagner, and K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
    [Crossref]
  81. A. A. Michelson, “Visibility of interference-fringes in the focus of a telescope,” London Edinb. Dublin Philos. Mag. J. Sci. 31(190), 256–259 (1891).
    [Crossref]
  82. F. Zernike, “Das phasenkontrastverfahren bei der mikroskopischen beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).
  83. M. W. Davidson, “Frits Zernike,” https://micro.magnet.fsu.edu/optics/timeline/people/zernike.html .
  84. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  85. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [Crossref]
  86. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  87. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  88. S. Nakadate, T. Yatagai, and H. Saito, “Electronic speckle pattern interferometry using digital image processing techniques,” Appl. Opt. 19, 1879–1883 (1980).
    [Crossref]
  89. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
    [Crossref]
  90. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [Crossref]
  91. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4, 118–123 (1987).
    [Crossref]
  92. J. R. Fienup, “Lensless coherent imaging by phase retrieval with an illumination pattern constraint,” Opt. Express 14, 498–508 (2006).
    [Crossref]
  93. J. R. Fienup, “Phase retrieval algorithms: a personal tour,” Appl. Opt. 52, 45–56 (2013).
    [Crossref]
  94. Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
    [Crossref]
  95. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
    [Crossref]
  96. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [Crossref]
  97. R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
    [Crossref]
  98. M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
    [Crossref]
  99. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
    [Crossref]
  100. R. J. C. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998).
    [Crossref]
  101. B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
    [Crossref]
  102. K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013).
    [Crossref]
  103. S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, and C. Marquardt, “Classically entangled optical beams for high-speed kinematic sensing,” Optica 2, 864–868 (2015).
    [Crossref]
  104. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  105. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [Crossref]
  106. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  107. B. R. Frieden, “Optical transfer of the three-dimensional object,” J. Opt. Soc. Am. 57, 56–66 (1967).
    [Crossref]
  108. N. Streibl, “Fundamental restrictions for 3-D light distributions,” Optik 66, 341–354 (1984).
  109. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [Crossref]
  110. D. N. Sitter and W. T. Rhodes, “Three-dimensional imaging: a space invariant model for space variant systems,” Appl. Opt. 29, 3789–3794 (1990).
    [Crossref]
  111. J. J. M. Braat and A. J. E. M. Janssen, “Derivation of various transfer functions of ideal or aberrated imaging systems from the three-dimensional transfer function,” J. Opt. Soc. Am. A 32, 1146–1159 (2015).
    [Crossref]
  112. M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (December19, 1961).
  113. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
    [Crossref]
  114. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
    [Crossref]
  115. T.-C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Korea 13, 406–415 (2009).
    [Crossref]
  116. T. G. Mayerhöfer, H. Mutschke, and J. Popp, “Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert law,” ChemPhysChem 17, 1948–1955 (2016).
    [Crossref]
  117. A. Vallebona and V. Maragliano, “Radiography with great enlargement (microradiography) and a technical method for the radiographic dissociation of the shadow,” Radiology 17, 340–341 (1931).
    [Crossref]
  118. F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics (SIAM, 2001).
  119. G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projection, 2nd ed. (Springer, 2009).
  120. J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten,” Berichteüber die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 69, 262–277 (1917).
  121. J. Radon, “On the determination of functions from their integral values along certain manifolds,” IEEE Trans. Med. Imaging 5, 170–176 (1986).
    [Crossref]
  122. Wikipedia, “CT scan,” https://en.wikipedia.org/wiki/CT_scan .
  123. P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242, 190–191 (1973).
    [Crossref]
  124. P. Mansfield and P. K. Grannell, “Diffraction and microscopy in solids and liquids by NMR,” Phys. Rev. B 12, 3618–3634 (1975).
    [Crossref]
  125. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
    [Crossref]
  126. J. C. Maxwell, “Experiments on colour, as perceived by the eye, with remarks on colour-blindness,” Earth Environ. Sci. Trans. R. Soc. Edinburgh 21, 275–298 (1857).
  127. B. E. Bayer, “Color imaging array,” U.S. patent3,971,065 (July20, 1976).
  128. Wikipedia, “Bayer filter,” https://en.wikipedia.org/wiki/Bayer_filter .
  129. F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
    [Crossref]
  130. T.-H. Chao, J. W. Yu, L.-J. Cheng, and J. L. Lambert, “Acousto-optic tunable filter imaging spectrometer for NASA applications: breadboard demonstration,” Proc. SPIE 1347, 655–663 (1990).
    [Crossref]
  131. T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
    [Crossref]
  132. T. Okamoto, A. Takahashi, and I. Yamaguchi, “Simultaneous acquisition of spectral and spatial intensity distribution,” Appl. Spectrosc. 47, 1198–1202 (1993).
    [Crossref]
  133. T. V. Bulygin and G. N. Vishnyakov, “Spectrotomography: a new method of obtaining spectrograms of two-dimensional objects,” Proc. SPIE 1843, 315–322 (1992).
    [Crossref]
  134. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
    [Crossref]
  135. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
    [Crossref]
  136. H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. A 28, 2400–2413 (2011).
    [Crossref]
  137. C. V. Correa, H. Arguello, and G. R. Arce, “Snapshot colored compressive spectral imager,” J. Opt. Soc. Am. A 32, 1754–1763 (2015).
    [Crossref]
  138. A. Parada-Mayorga and G. R. Arce, “Spectral super-resolution in colored coded aperture spectral imaging,” IEEE Trans. Comput. Imaging 2, 440–455 (2016).
    [Crossref]
  139. G. R. Arce, D. J. Brady, H. Arguello, L. Carin, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).
    [Crossref]
  140. J. Ojeda-Castañeda and C. M. Gómez-Sarabia, “Tuning field depth at high resolution by pupil engineering,” Adv. Opt. Photon. 7, 814–880 (2015).
    [Crossref]
  141. G. Häulser and F. Willomitzer, “A stroll through 3D imaging and measurement,” Int. Commission Opt. Newsletter 104, 1–5 (2015).
  142. F. Willomitzer, S. Ettl, C. Faber, and G. Häusler, “Single-shot three-dimensional sensing with improved data density,” Appl. Opt. 54, 408–417 (2015).
    [Crossref]
  143. F. Willomitzer and G. Häusler, “Single-shot 3D motion picture camera with a dense point cloud,” Opt. Express 25, 23451–23464 (2017).
    [Crossref]
  144. P. Rangarajan, I. Sinharoy, P. Milojkovic, and M. P. Christensen, “Active computational imaging for circumventing resolution limits at macroscopic scales,” Appl. Opt. 56, D84–D107 (2017).
    [Crossref]
  145. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
    [Crossref]
  146. S. Quirin and R. Piestun, “Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions,” Appl. Opt. 52, A367–A376 (2013).
    [Crossref]
  147. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
    [Crossref]
  148. G. M. Lippmann, “La photographic intégrale,” Compt. Rend. Acad. Sci. 146, 446–451 (1908).
  149. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
    [Crossref]
  150. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [Crossref]
  151. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
    [Crossref]
  152. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).
  153. R. Ng, “Digital light field photography,” Ph.D. thesis (Stanford University, 2006).
  154. J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time distributed light field camera,” in Proceedings of the 13th Eurographics Workshop on Rendering (2002), pp. 77–86.
  155. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
    [Crossref]
  156. M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
    [Crossref]
  157. J. E. Solomon, “Polarization imaging,” Appl. Opt. 20, 1537–1544 (1981).
    [Crossref]
  158. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [Crossref]
  159. P. C. Deguzman and G. P. Nordin, “Stacked subwavelength gratings as circular polarization filters,” Appl. Opt. 40, 5731–5737 (2001).
    [Crossref]
  160. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
    [Crossref]
  161. C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
    [Crossref]
  162. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32, 481–483 (2007).
    [Crossref]
  163. V. Gruev, J. V. der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010).
    [Crossref]
  164. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
    [Crossref]
  165. L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).
    [Crossref]
  166. A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
    [Crossref]
  167. L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
    [Crossref]
  168. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [Crossref]
  169. L. Cutrona, W. Vivian, E. Leith, and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Military Electron. MIL-5, 127–131 (1961).
    [Crossref]
  170. C. A. Wiley, “Pulsed Doppler radar methods and apparatus,” U.S. patent3,196,436 (July20, 1965).
  171. A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
    [Crossref]
  172. J. G. Ables, “Fourier transform photography: a new method for x-ray astronomy,” Publ. Astron. Soc. Aust. 1, 172–173 (1968).
    [Crossref]
  173. E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978).
    [Crossref]
  174. Wikipedia, “Coded aperture,” https://en.wikipedia.org/wiki/Coded_aperture .
  175. R. Accorsi, F. Gasparini, and R. C. Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
    [Crossref]
  176. P. Durrant, M. Dallimore, I. Jupp, and D. Ramsden, “The application of pinhole and coded aperture imaging in the nuclear environment,” Nucl. Instrum. Methods Phys. Res. A 422, 667–671 (1999).
    [Crossref]
  177. M. J. Cieślak, K. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development: a review,” Radiat. Meas. 92, 59–71 (2016).
    [Crossref]
  178. W. Lukosz and M. Marchand, “Optischen abbildung unter Überschreitung der beugungsbedingten auflösungsgrenze,” Opt. Acta 10, 241–255 (1963).
    [Crossref]
  179. R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).
    [Crossref]
  180. A. Papoulis, “A new algorithm in spectral analysis and bandlimited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742 (1975).
    [Crossref]
  181. R. J. Marks and D. K. Smith, “Iterative coherent processor for bandlimited signal extrapolation,” Proc. SPIE 231, 106–111 (1980).
    [Crossref]
  182. R. J. Marks, “Gerchberg’s extrapolation algorithm in two dimensions,” Appl. Opt. 20, 1815–1820 (1981).
    [Crossref]
  183. The Royal Swedish Academy of Sciences, “The Nobel Prize in Chemistry 2014 Eric Betzig, Stefan W. Hell, William E. Moerner,” https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.html .
  184. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  185. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9, 721–723 (2012).
    [Crossref]
  186. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  187. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
    [Crossref]
  188. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  189. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [Crossref]
  190. M. A. Thompson, M. D. Lew, and W. Moerner, “Extending microscopic resolution with single-molecule imaging and active control,” Ann. Rev. Biophys. 41, 321–342 (2012).
    [Crossref]
  191. A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
    [Crossref]
  192. Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
    [Crossref]
  193. R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25, 795–804 (2006).
    [Crossref]
  194. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
    [Crossref]
  195. A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Ann. Rev. Biomed. Eng. 18, 77–102 (2016).
    [Crossref]
  196. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [Crossref]
  197. R. Athale, D. M. Healy, D. J. Brady, and M. A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32–37 (2008).
    [Crossref]
  198. Light, “The light L16 camera,” https://light.co/ .
  199. R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.
  200. D. B. Cavanaugh, M. Dombrowski, and B. Catanzaro, “Spatially corrected full-cubed hyperspectral imager,” U.S. patent7,433,042 (October7, 2008).
  201. R. Horstmeyer, G. Euliss, and R. Athale, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (2009).
  202. P. G. Van Dokkum, R. Abraham, and A. Merritt, “First results from the dragonfly telephoto array: the apparent lack of a stellar halo in the massive spiral galaxy M101,” Astrophys. J. Lett. 782, L24 (2014).
    [Crossref]
  203. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [Crossref]
  204. A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
    [Crossref]
  205. J. R. Leger and S. H. Lee, “Coherent optical implementation of generalized two-dimensional transforms,” Opt. Eng. 18, 518–523 (1979).
    [Crossref]
  206. J. R. Leger and S. H. Lee, “Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions,” Appl. Opt. 21, 274–287 (1982).
    [Crossref]
  207. M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003).
    [Crossref]
  208. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).
    [Crossref]
  209. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [Crossref]
  210. M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  211. M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
    [Crossref]
  212. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [Crossref]
  213. Thorlabs, “AO tutorial,” https://www.thorlabs.com/tutorials.cfm?tabID=96a6f477-757e-43fa-9772-5a83e1acf6c1 .
  214. M. P. Christensen, G. W. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gracht, and R. A. Athale, “Active-eyes: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging,” Appl. Opt. 41, 6093–6103 (2002).
    [Crossref]
  215. M. P. Christensen, V. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager fields of view,” Appl. Opt. 45, 2884–2892 (2006).
    [Crossref]
  216. M. Somayaji, M. P. Christensen, E. Faramarzi, D. Rajan, J.-P. Laine, P. Sebelius, A. Zachai, M. Chaparala, G. Blasche, K. Baldwin, B. Ogunfemi, and D. Granquist-Fraser, “Prototype development and field-test results of an adaptive multiresolution PANOPTES imaging architecture,” Appl. Opt. 51, A48–A58 (2012).
    [Crossref]
  217. A. T. Watnik and P. S. Lebow, “Dynamic holography for extended object beam shaping,” Proc. SPIE 8843, 88430E (2013).
    [Crossref]
  218. A. T. Watnik and P. S. Lebow, “Limits of bootstrapping in a weak-signal holographic conjugator,” Appl. Opt. 53, 3841–3847 (2014).
    [Crossref]
  219. A. T. Watnik and P. S. Lebow, “Weak-signal iterative holography,” Appl. Opt. 54, 2615–2619 (2015).
    [Crossref]
  220. P. S. Lebow, A. T. Watnik, and J. R. Lindle, “Gated holographic imaging for structured illumination through obscurations,” Opt. Lett. 42, 2543–2546 (2017).
    [Crossref]
  221. M. E. Gehm and D. J. Brady, “Compressive sensing in the EO/IR,” Appl. Opt. 54, C14–C22 (2015).
    [Crossref]
  222. J. N. Mait, A. Mahalanobis, M. A. Neifeld, and R. A. Athale, “Compressive sensing focus issue: introduction,” Appl. Opt. 54, CS1–CS3 (2015).
    [Crossref]
  223. W. S. Parker, “An instrument for what? Digital computers, simulation and scientific practice,” Spontaneous Gener. 4, 39–44 (2010).
  224. J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
    [Crossref]
  225. R. Karl, C. Bevis, R. Lopez-Rios, J. Reichanadter, D. Gardner, C. Porter, E. Shanblatt, M. Tanksalvala, G. F. Mancini, M. Murnane, H. Kapteyn, and D. Adams, “Spatial, spectral, and polarization multiplexed ptychography,” Opt. Express 23, 30250–30258 (2015).
    [Crossref]
  226. J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
    [Crossref]
  227. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
    [Crossref]
  228. J. N. Mait, C. Harrity, R. D. Martin, C. A. Schuetz, S. Shi, and D. W. Prather, “Minimum bias image processing with a distributed-aperture millimeter-wave imager,” Appl. Opt. 56, A52–A61 (2017).
    [Crossref]
  229. G. Leifman, T. Swedish, K. Roesch, and R. Raskar, “Leveraging the crowd for annotation of retinal images,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015), pp. 7736–7739.
  230. M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics: Fundamentals and Applications (McGraw-Hill, 2009).
  231. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  232. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
    [Crossref]
  233. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  234. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref]
  235. O. Tzang, A. Agrawal, and R. Piestun, “Materials degrees of freedom for optical design,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper IW3E.3.
  236. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  237. K. Khare, Fourier Optics and Computational Imaging (Wiley, 2015).
  238. IEEE, “IEEE Transactions on Computational Imaging,” http://ieeexplore.ieee.org/servlet/opac?punumber=6745852 .

2017 (6)

2016 (4)

T. G. Mayerhöfer, H. Mutschke, and J. Popp, “Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert law,” ChemPhysChem 17, 1948–1955 (2016).
[Crossref]

A. Parada-Mayorga and G. R. Arce, “Spectral super-resolution in colored coded aperture spectral imaging,” IEEE Trans. Comput. Imaging 2, 440–455 (2016).
[Crossref]

M. J. Cieślak, K. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development: a review,” Radiat. Meas. 92, 59–71 (2016).
[Crossref]

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Ann. Rev. Biomed. Eng. 18, 77–102 (2016).
[Crossref]

2015 (13)

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref]

G. Häulser and F. Willomitzer, “A stroll through 3D imaging and measurement,” Int. Commission Opt. Newsletter 104, 1–5 (2015).

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

F. Willomitzer, S. Ettl, C. Faber, and G. Häusler, “Single-shot three-dimensional sensing with improved data density,” Appl. Opt. 54, 408–417 (2015).
[Crossref]

M. E. Gehm and D. J. Brady, “Compressive sensing in the EO/IR,” Appl. Opt. 54, C14–C22 (2015).
[Crossref]

J. N. Mait, A. Mahalanobis, M. A. Neifeld, and R. A. Athale, “Compressive sensing focus issue: introduction,” Appl. Opt. 54, CS1–CS3 (2015).
[Crossref]

A. T. Watnik and P. S. Lebow, “Weak-signal iterative holography,” Appl. Opt. 54, 2615–2619 (2015).
[Crossref]

J. J. M. Braat and A. J. E. M. Janssen, “Derivation of various transfer functions of ideal or aberrated imaging systems from the three-dimensional transfer function,” J. Opt. Soc. Am. A 32, 1146–1159 (2015).
[Crossref]

C. V. Correa, H. Arguello, and G. R. Arce, “Snapshot colored compressive spectral imager,” J. Opt. Soc. Am. A 32, 1754–1763 (2015).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
[Crossref]

S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, and C. Marquardt, “Classically entangled optical beams for high-speed kinematic sensing,” Optica 2, 864–868 (2015).
[Crossref]

R. Karl, C. Bevis, R. Lopez-Rios, J. Reichanadter, D. Gardner, C. Porter, E. Shanblatt, M. Tanksalvala, G. F. Mancini, M. Murnane, H. Kapteyn, and D. Adams, “Spatial, spectral, and polarization multiplexed ptychography,” Opt. Express 23, 30250–30258 (2015).
[Crossref]

J. Ojeda-Castañeda and C. M. Gómez-Sarabia, “Tuning field depth at high resolution by pupil engineering,” Adv. Opt. Photon. 7, 814–880 (2015).
[Crossref]

2014 (5)

A. T. Watnik and P. S. Lebow, “Limits of bootstrapping in a weak-signal holographic conjugator,” Appl. Opt. 53, 3841–3847 (2014).
[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]

M. Gupta, O. S. Cossairt, and A. Veeraraghavan, “A framework for analysis of computational imaging systems: role of signal prior, sensor noise and multiplexing,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 1909–1921 (2014).
[Crossref]

G. R. Arce, D. J. Brady, H. Arguello, L. Carin, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).
[Crossref]

P. G. Van Dokkum, R. Abraham, and A. Merritt, “First results from the dragonfly telephoto array: the apparent lack of a stellar halo in the massive spiral galaxy M101,” Astrophys. J. Lett. 782, L24 (2014).
[Crossref]

2013 (8)

A. T. Watnik and P. S. Lebow, “Dynamic holography for extended object beam shaping,” Proc. SPIE 8843, 88430E (2013).
[Crossref]

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013).
[Crossref]

O. S. Cossairt, M. Gupta, and S. K. Nayar, “When does computational imaging improve performance?” IEEE Trans. Image Process. 22, 447–458 (2013).
[Crossref]

S. Quirin and R. Piestun, “Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions,” Appl. Opt. 52, A367–A376 (2013).
[Crossref]

J. R. Fienup, “Phase retrieval algorithms: a personal tour,” Appl. Opt. 52, 45–56 (2013).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[Crossref]

2012 (6)

M. Somayaji, M. P. Christensen, E. Faramarzi, D. Rajan, J.-P. Laine, P. Sebelius, A. Zachai, M. Chaparala, G. Blasche, K. Baldwin, B. Ogunfemi, and D. Granquist-Fraser, “Prototype development and field-test results of an adaptive multiresolution PANOPTES imaging architecture,” Appl. Opt. 51, A48–A58 (2012).
[Crossref]

J. N. Mait, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Millimeter wave imaging with engineered point spread functions,” Opt. Eng. 51, 091606 (2012).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

M. A. Thompson, M. D. Lew, and W. Moerner, “Extending microscopic resolution with single-molecule imaging and active control,” Ann. Rev. Biophys. 41, 321–342 (2012).
[Crossref]

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

2011 (4)

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

C. Zhou and S. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20, 3322–3340 (2011).
[Crossref]

H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. A 28, 2400–2413 (2011).
[Crossref]

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28, 2540–2553 (2011).
[Crossref]

2010 (6)

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

V. Gruev, J. V. der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010).
[Crossref]

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

W. S. Parker, “An instrument for what? Digital computers, simulation and scientific practice,” Spontaneous Gener. 4, 39–44 (2010).

2009 (4)

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[Crossref]

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

T.-C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Korea 13, 406–415 (2009).
[Crossref]

2008 (9)

M. D. Robinson and D. G. Stork, “Joint digital-optical design of superresolution multiframe imaging systems,” Appl. Opt. 47, B11–B20 (2008).
[Crossref]

D. G. Stork and M. D. Robinson, “Theoretical foundations for joint digital-optical analysis of electro-optical imaging systems,” Appl. Opt. 47, B64–B75 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

R. Athale, D. M. Healy, D. J. Brady, and M. A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32–37 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
[Crossref]

2007 (2)

2006 (12)

A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
[Crossref]

J. R. Fienup, “Lensless coherent imaging by phase retrieval with an illumination pattern constraint,” Opt. Express 14, 498–508 (2006).
[Crossref]

M. P. Christensen, V. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager fields of view,” Appl. Opt. 45, 2884–2892 (2006).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[Crossref]

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25, 795–804 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

J. N. Mait, “A history of imaging: revisiting the past to chart the future,” Opt. Photon. News 17(2), 22–27 (2006).
[Crossref]

2005 (3)

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
[Crossref]

2004 (5)

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[Crossref]

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
[Crossref]

E. R. Dowski and K. S. Kubala, “Design and optimization of computational imaging systems,” Proc. SPIE 5299, 155–162 (2004).
[Crossref]

K. S. Kubala, E. R. Dowski, J. Kobus, and R. Brown, “Design and optimization of aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54–65 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

2003 (4)

2002 (6)

2001 (6)

2000 (3)

1999 (4)

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[Crossref]

P. Durrant, M. Dallimore, I. Jupp, and D. Ramsden, “The application of pinhole and coded aperture imaging in the nuclear environment,” Nucl. Instrum. Methods Phys. Res. A 422, 667–671 (1999).
[Crossref]

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

1998 (3)

1997 (1)

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).
[Crossref]

1996 (3)

1995 (7)

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
[Crossref]

M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817–4826 (1995).
[Crossref]

H. H. Barrett, J. Denny, R. F. Wagner, and K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
[Crossref]

J. van der Gracht, E. R. Dowski, W. T. Cathey, and J. P. Bowen, “Aspheric optical elements for extended depth-of-field imaging,” Proc. SPIE 2537, 279–288 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
[Crossref]

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[Crossref]

1994 (1)

1993 (3)

S. K. Park and R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” Proc. SPIE 1961, 2–13 (1993).
[Crossref]

W. Veldkamp, “Wireless focal planes ‘on the road to amacronic sensors’,” IEEE J. Quantum Electron. 29, 801–813 (1993).
[Crossref]

T. Okamoto, A. Takahashi, and I. Yamaguchi, “Simultaneous acquisition of spectral and spatial intensity distribution,” Appl. Spectrosc. 47, 1198–1202 (1993).
[Crossref]

1992 (2)

T. V. Bulygin and G. N. Vishnyakov, “Spectrotomography: a new method of obtaining spectrograms of two-dimensional objects,” Proc. SPIE 1843, 315–322 (1992).
[Crossref]

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

1991 (2)

J. R. Fienup, “Phase retrieval for the Hubble Space Telescope using iterative propagation algorithms,” Proc. SPIE 1567, 327–332 (1991).
[Crossref]

T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
[Crossref]

1990 (2)

D. N. Sitter and W. T. Rhodes, “Three-dimensional imaging: a space invariant model for space variant systems,” Appl. Opt. 29, 3789–3794 (1990).
[Crossref]

T.-H. Chao, J. W. Yu, L.-J. Cheng, and J. L. Lambert, “Acousto-optic tunable filter imaging spectrometer for NASA applications: breadboard demonstration,” Proc. SPIE 1347, 655–663 (1990).
[Crossref]

1989 (2)

1988 (2)

1987 (3)

1986 (1)

J. Radon, “On the determination of functions from their integral values along certain manifolds,” IEEE Trans. Med. Imaging 5, 170–176 (1986).
[Crossref]

1985 (2)

1984 (3)

1982 (2)

1981 (2)

1980 (4)

S. Nakadate, T. Yatagai, and H. Saito, “Electronic speckle pattern interferometry using digital image processing techniques,” Appl. Opt. 19, 1879–1883 (1980).
[Crossref]

R. J. Marks and D. K. Smith, “Iterative coherent processor for bandlimited signal extrapolation,” Proc. SPIE 231, 106–111 (1980).
[Crossref]

D. E. Marshall, “Focal plane array design for optimum system performance,” Infrared Imaging Syst. Technol. 226, 66–73 (1980).
[Crossref]

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[Crossref]

1979 (1)

J. R. Leger and S. H. Lee, “Coherent optical implementation of generalized two-dimensional transforms,” Opt. Eng. 18, 518–523 (1979).
[Crossref]

1978 (3)

1975 (2)

A. Papoulis, “A new algorithm in spectral analysis and bandlimited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742 (1975).
[Crossref]

P. Mansfield and P. K. Grannell, “Diffraction and microscopy in solids and liquids by NMR,” Phys. Rev. B 12, 3618–3634 (1975).
[Crossref]

1974 (1)

R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).
[Crossref]

1973 (1)

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242, 190–191 (1973).
[Crossref]

1972 (2)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
[Crossref]

1970 (1)

1969 (1)

1968 (1)

J. G. Ables, “Fourier transform photography: a new method for x-ray astronomy,” Publ. Astron. Soc. Aust. 1, 172–173 (1968).
[Crossref]

1967 (2)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

B. R. Frieden, “Optical transfer of the three-dimensional object,” J. Opt. Soc. Am. 57, 56–66 (1967).
[Crossref]

1966 (1)

1965 (1)

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).

1964 (3)

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[Crossref]

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[Crossref]

E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
[Crossref]

1963 (1)

W. Lukosz and M. Marchand, “Optischen abbildung unter Überschreitung der beugungsbedingten auflösungsgrenze,” Opt. Acta 10, 241–255 (1963).
[Crossref]

1962 (1)

1961 (2)

D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
[Crossref]

L. Cutrona, W. Vivian, E. Leith, and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Military Electron. MIL-5, 127–131 (1961).
[Crossref]

1960 (1)

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6, 386–400 (1960).
[Crossref]

1956 (2)

1955 (2)

G. T. di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–501 (1955).
[Crossref]

P. Fellgett and E. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

1948 (2)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[Crossref]

1935 (1)

F. Zernike, “Das phasenkontrastverfahren bei der mikroskopischen beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).

1931 (1)

A. Vallebona and V. Maragliano, “Radiography with great enlargement (microradiography) and a technical method for the radiographic dissociation of the shadow,” Radiology 17, 340–341 (1931).
[Crossref]

1917 (1)

J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten,” Berichteüber die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 69, 262–277 (1917).

1908 (1)

G. M. Lippmann, “La photographic intégrale,” Compt. Rend. Acad. Sci. 146, 446–451 (1908).

1896 (1)

Lord Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London Edinb. Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]

1891 (1)

A. A. Michelson, “Visibility of interference-fringes in the focus of a telescope,” London Edinb. Dublin Philos. Mag. J. Sci. 31(190), 256–259 (1891).
[Crossref]

1879 (1)

Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” London Edinb. Dublin Philos. Mag. J. Sci. 8, 261–274 (1879).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv für mikroskopische Anatomie 9, 413–418 (1873).
[Crossref]

1857 (1)

J. C. Maxwell, “Experiments on colour, as perceived by the eye, with remarks on colour-blindness,” Earth Environ. Sci. Trans. R. Soc. Edinburgh 21, 275–298 (1857).

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv für mikroskopische Anatomie 9, 413–418 (1873).
[Crossref]

Ables, J. G.

J. G. Ables, “Fourier transform photography: a new method for x-ray astronomy,” Publ. Astron. Soc. Aust. 1, 172–173 (1968).
[Crossref]

Abookasis, D.

Abouraddy, A. F.

K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013).
[Crossref]

Abraham, R.

P. G. Van Dokkum, R. Abraham, and A. Merritt, “First results from the dragonfly telephoto array: the apparent lack of a stellar halo in the massive spiral galaxy M101,” Astrophys. J. Lett. 782, L24 (2014).
[Crossref]

Accorsi, R.

R. Accorsi, F. Gasparini, and R. C. Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[Crossref]

Adams, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

Adams, D.

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

Agrawal, A.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25, 795–804 (2006).
[Crossref]

O. Tzang, A. Agrawal, and R. Piestun, “Materials degrees of freedom for optical design,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper IW3E.3.

Aiello, A.

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[Crossref]

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[Crossref]

Andrews, H.

H. Andrews and B. Hunt, Digital Image Restoration (Prentice-Hall, 1977).

Antipa, N.

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper CTu3B.2.

Antunez, E.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

Arce, G. R.

A. Parada-Mayorga and G. R. Arce, “Spectral super-resolution in colored coded aperture spectral imaging,” IEEE Trans. Comput. Imaging 2, 440–455 (2016).
[Crossref]

C. V. Correa, H. Arguello, and G. R. Arce, “Snapshot colored compressive spectral imager,” J. Opt. Soc. Am. A 32, 1754–1763 (2015).
[Crossref]

G. R. Arce, D. J. Brady, H. Arguello, L. Carin, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).
[Crossref]

H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. A 28, 2400–2413 (2011).
[Crossref]

Arguello, H.

Arimoto, H.

Athale, R.

R. Athale, D. M. Healy, D. J. Brady, and M. A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32–37 (2008).
[Crossref]

J. N. Mait, R. Athale, and J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Express 11, 2093–2101 (2003).
[Crossref]

R. Horstmeyer, G. Euliss, and R. Athale, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (2009).

Athale, R. A.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Baldwin, K.

Bando, Y.

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

Banzer, P.

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Barnard, R.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Barrett, H. H.

Bartelt, H.

H. Bartelt, S. K. Case, and R. Hauck, “Incoherent-optical processing,” in Applications of Optical Fourier Transforms, H. Stark, ed. (Academic, 1982), pp. 499–536.

Barth, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

Bayer, B. E.

B. E. Bayer, “Color imaging array,” U.S. patent3,971,065 (July20, 1976).

Beghuin, D.

Behrmann, G.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Behrmann, G. P.

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Berg-Johansen, S.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bevis, C.

Bhakta, V.

Blasche, G.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Borghi, R.

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

Bowen, J. P.

J. van der Gracht, E. R. Dowski, W. T. Cathey, and J. P. Bowen, “Aspheric optical elements for extended depth-of-field imaging,” Proc. SPIE 2537, 279–288 (1995).
[Crossref]

Boyd, R. W.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Boyle, W. S.

W. S. Boyle and G. E. Smith, “Information storage devices,” U.S. patent3,858,232 (December31, 1974).

Braat, J. J. M.

Brady, D. J.

M. E. Gehm and D. J. Brady, “Compressive sensing in the EO/IR,” Appl. Opt. 54, C14–C22 (2015).
[Crossref]

G. R. Arce, D. J. Brady, H. Arguello, L. Carin, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

R. Athale, D. M. Healy, D. J. Brady, and M. A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32–37 (2008).
[Crossref]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).

Brown, B. R.

Brown, R.

K. S. Kubala, E. R. Dowski, J. Kobus, and R. Brown, “Design and optimization of aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54–65 (2004).
[Crossref]

Buehler, C.

J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time distributed light field camera,” in Proceedings of the 13th Eurographics Workshop on Rendering (2002), pp. 77–86.

Bulygin, T. V.

T. V. Bulygin and G. N. Vishnyakov, “Spectrotomography: a new method of obtaining spectrograms of two-dimensional objects,” Proc. SPIE 1843, 315–322 (1992).
[Crossref]

Candes, E. J.

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).
[Crossref]

Cannon, T. M.

Carin, L.

G. R. Arce, D. J. Brady, H. Arguello, L. Carin, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).
[Crossref]

Case, S. K.

H. Bartelt, S. K. Case, and R. Hauck, “Incoherent-optical processing,” in Applications of Optical Fourier Transforms, H. Stark, ed. (Academic, 1982), pp. 499–536.

Catanzaro, B.

D. B. Cavanaugh, M. Dombrowski, and B. Catanzaro, “Spatially corrected full-cubed hyperspectral imager,” U.S. patent7,433,042 (October7, 2008).

Cathey, W. T.

Cavanaugh, D. B.

D. B. Cavanaugh, M. Dombrowski, and B. Catanzaro, “Spatially corrected full-cubed hyperspectral imager,” U.S. patent7,433,042 (October7, 2008).

Chan, K. W. C.

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

Chao, T.-H.

T.-H. Chao, J. W. Yu, L.-J. Cheng, and J. L. Lambert, “Acousto-optic tunable filter imaging spectrometer for NASA applications: breadboard demonstration,” Proc. SPIE 1347, 655–663 (1990).
[Crossref]

Chaparala, M.

Chapman, H. N.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

Charalambous, P.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Chen, B.-Y.

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

Chenault, D. B.

Cheng, L.-J.

T.-H. Chao, J. W. Yu, L.-J. Cheng, and J. L. Lambert, “Acousto-optic tunable filter imaging spectrometer for NASA applications: breadboard demonstration,” Proc. SPIE 1347, 655–663 (1990).
[Crossref]

Chipman, R. A.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
[Crossref]

Cho, T. S.

A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
[Crossref]

Chou, W.-C.

Christensen, M. P.

Cieslak, M. J.

M. J. Cieślak, K. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development: a review,” Radiat. Meas. 92, 59–71 (2016).
[Crossref]

Cohen, O.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

Colomb, T.

Cooley, J. W.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).

Correa, C. V.

Cossairt, O. S.

M. Gupta, O. S. Cossairt, and A. Veeraraghavan, “A framework for analysis of computational imaging systems: role of signal prior, sensor noise and multiplexing,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 1909–1921 (2014).
[Crossref]

O. S. Cossairt, M. Gupta, and S. K. Nayar, “When does computational imaging improve performance?” IEEE Trans. Image Process. 22, 447–458 (2013).
[Crossref]

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28, 2540–2553 (2011).
[Crossref]

Coyle, K. M.

Cuche, E.

Cull, C. F.

Cutrona, L.

L. Cutrona, W. Vivian, E. Leith, and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Military Electron. MIL-5, 127–131 (1961).
[Crossref]

Cutrona, L. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6, 386–400 (1960).
[Crossref]

Dahlgren, P.

Dallimore, M.

P. Durrant, M. Dallimore, I. Jupp, and D. Ramsden, “The application of pinhole and coded aperture imaging in the nuclear environment,” Nucl. Instrum. Methods Phys. Res. A 422, 667–671 (1999).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Deaver, D. M.

Deguzman, P. C.

Denny, J.

Depeursinge, C.

der Spiegel, J. V.

Dereniak, E.

Descour, M.

di Francia, G. T.

Dombrowski, M.

D. B. Cavanaugh, M. Dombrowski, and B. Catanzaro, “Spatially corrected full-cubed hyperspectral imager,” U.S. patent7,433,042 (October7, 2008).

Donoho, D. L.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

Dorsch, R. G.

Douglas, S. C.

Dowski, E. R.

E. R. Dowski and K. S. Kubala, “Design and optimization of computational imaging systems,” Proc. SPIE 5299, 155–162 (2004).
[Crossref]

K. S. Kubala, E. R. Dowski, J. Kobus, and R. Brown, “Design and optimization of aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54–65 (2004).
[Crossref]

K. S. Kubala, E. R. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102–2108 (2003).
[Crossref]

H. B. Wach, E. R. Dowski, and W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37, 5359–5367 (1998).
[Crossref]

J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996).
[Crossref]

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
[Crossref]

J. van der Gracht, E. R. Dowski, W. T. Cathey, and J. P. Bowen, “Aspheric optical elements for extended depth-of-field imaging,” Proc. SPIE 2537, 279–288 (1995).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Duffieux, P.-M.

P.-M. Duffieux, L’intégrale de fourier et ses applications à l’optique (1946). Privately published by Oberthur in Rennes.

Durand, F.

A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
[Crossref]

Durrant, P.

P. Durrant, M. Dallimore, I. Jupp, and D. Ramsden, “The application of pinhole and coded aperture imaging in the nuclear environment,” Nucl. Instrum. Methods Phys. Res. A 422, 667–671 (1999).
[Crossref]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).

Eldar, Y. C.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

Elnatan, D.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Engheta, N.

Ettl, S.

Euliss, G.

R. Horstmeyer, G. Euliss, and R. Athale, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (2009).

Euliss, G. W.

J. N. Mait, J. van der Gracht, and G. W. Euliss, “Design of a diffractive anti-aliasing filter using information density,” Proc. SPIE 4736, 107–115 (2002).
[Crossref]

M. P. Christensen, G. W. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gracht, and R. A. Athale, “Active-eyes: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging,” Appl. Opt. 41, 6093–6103 (2002).
[Crossref]

G. W. Euliss and J. van der Gracht, “Information-theoretic analyses of a birefringent blur filter,” Appl. Opt. 40, 6492–6504 (2001).
[Crossref]

R. A. Athale, G. W. Euliss, and J. N. Mait, “Computation imaging: old wine in new bottles?” in Frontiers in Optics (Optical Society of America, 2006), paper FWH2.

Everett, M.

J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time distributed light field camera,” in Proceedings of the 13th Eurographics Workshop on Rendering (2002), pp. 77–86.

Faber, C.

Fales, C. L.

Farahi, S.

Faramarzi, E.

Farulla, G. A.

G. A. Farulla, M. Indaco, D. Rolfo, L. O. Russo, and P. Trotta, “Evaluation of image deblurring algorithms for real-time applications,” in 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (2014).

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Fellgett, P.

P. Fellgett and E. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Fenimore, E. E.

Ferreira, C.

Fienup, J. R.

Freeman, W. T.

A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
[Crossref]

Frieden, B. R.

Gabor, D.

D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Gamage, K. A.

M. J. Cieślak, K. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development: a review,” Radiat. Meas. 92, 59–71 (2016).
[Crossref]

Gardner, D.

Gasparini, F.

R. Accorsi, F. Gasparini, and R. C. Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[Crossref]

Gehm, M. E.

Gerchberg, R. W.

R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).
[Crossref]

Giacobino, E.

Giuseppe, G. D.

K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013).
[Crossref]

Glover, R.

M. J. Cieślak, K. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development: a review,” Radiat. Meas. 92, 59–71 (2016).
[Crossref]

Goldstein, D. L.

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Gómez-Sarabia, C. M.

Good, B. L.

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

Goodman, J. W.

Gori, F.

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

Goy, A.

Grannell, P. K.

P. Mansfield and P. K. Grannell, “Diffraction and microscopy in solids and liquids by NMR,” Phys. Rev. B 12, 3618–3634 (1975).
[Crossref]

Granquist-Fraser, D.

Gray, B.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Greengard, A.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[Crossref]

A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
[Crossref]

Gruev, V.

Gupta, M.

M. Gupta, O. S. Cossairt, and A. Veeraraghavan, “A framework for analysis of computational imaging systems: role of signal prior, sensor noise and multiplexing,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 1909–1921 (2014).
[Crossref]

O. S. Cossairt, M. Gupta, and S. K. Nayar, “When does computational imaging improve performance?” IEEE Trans. Image Process. 22, 447–458 (2013).
[Crossref]

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Hajnsek, I.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Hall, G.

L. Cutrona, W. Vivian, E. Leith, and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Military Electron. MIL-5, 127–131 (1961).
[Crossref]

Halyo, N.

Haney, M. W.

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).

Harrity, C.

Hauck, R.

H. Bartelt, S. K. Case, and R. Hauck, “Incoherent-optical processing,” in Applications of Optical Fourier Transforms, H. Stark, ed. (Academic, 1982), pp. 499–536.

Häulser, G.

G. Häulser and F. Willomitzer, “A stroll through 3D imaging and measurement,” Int. Commission Opt. Newsletter 104, 1–5 (2015).

Häusler, G.

Hazra, R.

S. K. Park and R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” Proc. SPIE 1961, 2–13 (1993).
[Crossref]

Healy, D. M.

R. Athale, D. M. Healy, D. J. Brady, and M. A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32–37 (2008).
[Crossref]

Hennelly, B.

M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics: Fundamentals and Applications (McGraw-Hill, 2009).

Herman, G. T.

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projection, 2nd ed. (Springer, 2009).

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Horowitz, M.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

R. Horstmeyer, G. Euliss, and R. Athale, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (2009).

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Huang, B.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Huck, F. O.

Hunt, B.

H. Andrews and B. Hunt, Digital Image Restoration (Prentice-Hall, 1977).

Ichioka, Y.

Indaco, M.

G. A. Farulla, M. Indaco, D. Rolfo, L. O. Russo, and P. Trotta, “Evaluation of image deblurring algorithms for real-time applications,” in 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (2014).

Isaacson, K.

Ishida, K.

Ishikawa, T.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref]

Isikman, S. O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

Iso, D.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref]

Jang, J.-S.

Janssen, A. J. E. M.

Javidi, B.

Jha, A.

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

John, R.

Jones, M. W.

Joshi, N.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

Jupp, I.

P. Durrant, M. Dallimore, I. Jupp, and D. Ramsden, “The application of pinhole and coded aperture imaging in the nuclear environment,” Nucl. Instrum. Methods Phys. Res. A 422, 667–671 (1999).
[Crossref]

Jüptner, W.

Kagalwala, K. H.

K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013).
[Crossref]

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[Crossref]

Kapteyn, H.

Karl, R.

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Khare, K.

K. Khare, Fourier Optics and Computational Imaging (Wiley, 2015).

Kim, G.

Kim, M. K.

Kirz, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Kittle, D. S.

G. R. Arce, D. J. Brady, H. Arguello, L. Carin, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Kobus, J.

K. S. Kubala, E. R. Dowski, J. Kobus, and R. Brown, “Design and optimization of aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54–65 (2004).
[Crossref]

Kondou, N.

Krieger, G.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Kubala, K. S.

E. R. Dowski and K. S. Kubala, “Design and optimization of computational imaging systems,” Proc. SPIE 5299, 155–162 (2004).
[Crossref]

K. S. Kubala, E. R. Dowski, J. Kobus, and R. Brown, “Design and optimization of aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54–65 (2004).
[Crossref]

K. S. Kubala, E. R. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102–2108 (2003).
[Crossref]

Kumagai, T.

Kuo, G.

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper CTu3B.2.

Laine, J.-P.

Lam, E. Y.

Lambert, J. L.

T.-H. Chao, J. W. Yu, L.-J. Cheng, and J. L. Lambert, “Acousto-optic tunable filter imaging spectrometer for NASA applications: breadboard demonstration,” Proc. SPIE 1347, 655–663 (1990).
[Crossref]

Lanza, R. C.

R. Accorsi, F. Gasparini, and R. C. Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lauterbur, P. C.

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242, 190–191 (1973).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Lebow, P. S.

Lee, S. H.

J. R. Leger and S. H. Lee, “Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions,” Appl. Opt. 21, 274–287 (1982).
[Crossref]

J. R. Leger and S. H. Lee, “Coherent optical implementation of generalized two-dimensional transforms,” Opt. Eng. 18, 518–523 (1979).
[Crossref]

Leger, J. R.

J. R. Leger and S. H. Lee, “Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions,” Appl. Opt. 21, 274–287 (1982).
[Crossref]

J. R. Leger and S. H. Lee, “Coherent optical implementation of generalized two-dimensional transforms,” Opt. Eng. 18, 518–523 (1979).
[Crossref]

Leifman, G.

G. Leifman, T. Swedish, K. Roesch, and R. Raskar, “Leveraging the crowd for annotation of retinal images,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015), pp. 7736–7739.

Leith, E.

L. Cutrona, W. Vivian, E. Leith, and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Military Electron. MIL-5, 127–131 (1961).
[Crossref]

Leith, E. N.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

Leuchs, G.

Levin, A.

A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
[Crossref]

Levoy, M.

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[Crossref]

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).

Lew, M. D.

M. A. Thompson, M. D. Lew, and W. Moerner, “Extending microscopic resolution with single-molecule imaging and active control,” Ann. Rev. Biophys. 41, 321–342 (2012).
[Crossref]

Li, X.

Lindle, J. R.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Linfoot, E.

P. Fellgett and E. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Linfoot, E. H.

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Lippmann, G. M.

G. M. Lippmann, “La photographic intégrale,” Compt. Rend. Acad. Sci. 146, 446–451 (1908).

Lohmann, A. W.

Lopez-Rios, R.

Lord Rayleigh,

Lord Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London Edinb. Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]

Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” London Edinb. Dublin Philos. Mag. J. Sci. 8, 261–274 (1879).
[Crossref]

Loterie, D.

Lugt, A. V.

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[Crossref]

Lukosz, W.

W. Lukosz and M. Marchand, “Optischen abbildung unter Überschreitung der beugungsbedingten auflösungsgrenze,” Opt. Acta 10, 241–255 (1963).
[Crossref]

Lustig, M.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

Mahalanobis, A.

Mait, J. N.

J. N. Mait, C. Harrity, R. D. Martin, C. A. Schuetz, S. Shi, and D. W. Prather, “Minimum bias image processing with a distributed-aperture millimeter-wave imager,” Appl. Opt. 56, A52–A61 (2017).
[Crossref]

J. N. Mait, A. Mahalanobis, M. A. Neifeld, and R. A. Athale, “Compressive sensing focus issue: introduction,” Appl. Opt. 54, CS1–CS3 (2015).
[Crossref]

J. N. Mait, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Millimeter wave imaging with engineered point spread functions,” Opt. Eng. 51, 091606 (2012).
[Crossref]

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

J. N. Mait, “A history of imaging: revisiting the past to chart the future,” Opt. Photon. News 17(2), 22–27 (2006).
[Crossref]

J. N. Mait, R. Athale, and J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Express 11, 2093–2101 (2003).
[Crossref]

J. N. Mait, J. van der Gracht, and G. W. Euliss, “Design of a diffractive anti-aliasing filter using information density,” Proc. SPIE 4736, 107–115 (2002).
[Crossref]

J. N. Mait, U.S. Army Workshop on Integrated Imaging, Research Triangle Park, December17, 1999.

R. A. Athale, G. W. Euliss, and J. N. Mait, “Computation imaging: old wine in new bottles?” in Frontiers in Optics (Optical Society of America, 2006), paper FWH2.

Malik, M.

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

Mancini, G. F.

Mansfield, P.

P. Mansfield and P. K. Grannell, “Diffraction and microscopy in solids and liquids by NMR,” Phys. Rev. B 12, 3618–3634 (1975).
[Crossref]

Maragliano, V.

A. Vallebona and V. Maragliano, “Radiography with great enlargement (microradiography) and a technical method for the radiographic dissociation of the shadow,” Radiology 17, 340–341 (1931).
[Crossref]

Marchand, M.

W. Lukosz and M. Marchand, “Optischen abbildung unter Überschreitung der beugungsbedingten auflösungsgrenze,” Opt. Acta 10, 241–255 (1963).
[Crossref]

Marks, D. L.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

Marks, R. J.

R. J. Marks, “Gerchberg’s extrapolation algorithm in two dimensions,” Appl. Opt. 20, 1815–1820 (1981).
[Crossref]

R. J. Marks and D. K. Smith, “Iterative coherent processor for bandlimited signal extrapolation,” Proc. SPIE 231, 106–111 (1980).
[Crossref]

Marquardt, C.

Marquet, P.

Marshall, D. E.

D. E. Marshall, “Focal plane array design for optimum system performance,” Infrared Imaging Syst. Technol. 226, 66–73 (1980).
[Crossref]

Martienssen, W.

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[Crossref]

Martin, R. D.

J. N. Mait, C. Harrity, R. D. Martin, C. A. Schuetz, S. Shi, and D. W. Prather, “Minimum bias image processing with a distributed-aperture millimeter-wave imager,” Appl. Opt. 56, A52–A61 (2017).
[Crossref]

J. N. Mait, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Millimeter wave imaging with engineered point spread functions,” Opt. Eng. 51, 091606 (2012).
[Crossref]

Martinez-Corral, M.

Mathews, S. A.

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

Matic, R. M.

Mattheiss, M.

Matthews, S.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Maxwell, J. C.

J. C. Maxwell, “Experiments on colour, as perceived by the eye, with remarks on colour-blindness,” Earth Environ. Sci. Trans. R. Soc. Edinburgh 21, 275–298 (1857).

Mayerhöfer, T. G.

T. G. Mayerhöfer, H. Mutschke, and J. Popp, “Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert law,” ChemPhysChem 17, 1948–1955 (2016).
[Crossref]

McCormick, J. A.

McFadden, M. J.

McLeod, E.

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Ann. Rev. Biomed. Eng. 18, 77–102 (2016).
[Crossref]

McMillan, L.

J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time distributed light field camera,” in Proceedings of the 13th Eurographics Workshop on Rendering (2002), pp. 77–86.

Meier, J. T.

Mendlovic, D.

Menon, R.

Merritt, A.

P. G. Van Dokkum, R. Abraham, and A. Merritt, “First results from the dragonfly telephoto array: the apparent lack of a stellar halo in the massive spiral galaxy M101,” Astrophys. J. Lett. 782, L24 (2014).
[Crossref]

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Miao, J.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref]

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Miau, D.

Michelson, A. A.

A. A. Michelson, “Visibility of interference-fringes in the focus of a telescope,” London Edinb. Dublin Philos. Mag. J. Sci. 31(190), 256–259 (1891).
[Crossref]

Milojkovic, P.

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (December19, 1961).

Mirani, T.

Mirotznik, M.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Mirotznik, M. S.

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

Mitsunaga, T.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref]

Miyatake, S.

Miyazaki, D.

Moerner, W.

M. A. Thompson, M. D. Lew, and W. Moerner, “Extending microscopic resolution with single-molecule imaging and active control,” Ann. Rev. Biophys. 41, 321–342 (2012).
[Crossref]

Moreira, A.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Morimoto, T.

Moser, C.

Mudanyali, O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

Mukunda, N.

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

Murata, S.

Murnane, M.

Murnane, M. M.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref]

Mutschke, H.

T. G. Mayerhöfer, H. Mutschke, and J. Popp, “Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert law,” ChemPhysChem 17, 1948–1955 (2016).
[Crossref]

Myers, K. J.

Nakadate, S.

Natterer, F.

F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics (SIAM, 2001).

Nayar, S.

C. Zhou and S. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20, 3322–3340 (2011).
[Crossref]

Nayar, S. K.

O. S. Cossairt, M. Gupta, and S. K. Nayar, “When does computational imaging improve performance?” IEEE Trans. Image Process. 22, 447–458 (2013).
[Crossref]

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28, 2540–2553 (2011).
[Crossref]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref]

Neifeld, M. A.

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).

R. Ng, “Digital light field photography,” Ph.D. thesis (Stanford University, 2006).

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper CTu3B.2.

Nishita, T.

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

Nitanai, E.

Nomura, T.

Nordin, G. P.

Numata, T.

O’Sullivan, C.

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

Ogunfemi, B.

Ojeda-Castaneda, J.

M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics: Fundamentals and Applications (McGraw-Hill, 2009).

Ojeda-Castañeda, J.

Okamoto, T.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Onural, L.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[Crossref]

Ornigotti, M.

Ozcan, A.

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Ann. Rev. Biomed. Eng. 18, 77–102 (2016).
[Crossref]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

Oztoprak, C.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

Padgett, M. J.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
[Crossref]

Palermo, C. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6, 386–400 (1960).
[Crossref]

Palmer, R.

Papadopoulos, I.

Papathanassiou, K. P.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Papoulis, A.

A. Papoulis, “A new algorithm in spectral analysis and bandlimited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742 (1975).
[Crossref]

Parada-Mayorga, A.

A. Parada-Mayorga and G. R. Arce, “Spectral super-resolution in colored coded aperture spectral imaging,” IEEE Trans. Comput. Imaging 2, 440–455 (2016).
[Crossref]

Park, S. K.

S. K. Park and R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” Proc. SPIE 1961, 2–13 (1993).
[Crossref]

F. O. Huck, J. A. McCormick, S. K. Park, and C. L. Fales, “Image-gathering system design for information and fidelity,” J. Opt. Soc. Am. A 5, 285–299 (1988).
[Crossref]

Parker, W. S.

W. S. Parker, “An instrument for what? Digital computers, simulation and scientific practice,” Spontaneous Gener. 4, 39–44 (2010).

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Pauca, V. P.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Pauly, J. M.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

Pavani, S. R. P.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
[Crossref]

Pezzaniti, J. L.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
[Crossref]

Piestun, R.

S. Quirin and R. Piestun, “Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions,” Appl. Opt. 52, A367–A376 (2013).
[Crossref]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[Crossref]

A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
[Crossref]

O. Tzang, A. Agrawal, and R. Piestun, “Materials degrees of freedom for optical design,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper IW3E.3.

Pitsianis, N. P.

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Plemmons, R. J.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Poon, T.-C.

Popp, J.

T. G. Mayerhöfer, H. Mutschke, and J. Popp, “Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert law,” ChemPhysChem 17, 1948–1955 (2016).
[Crossref]

Porcello, L. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6, 386–400 (1960).
[Crossref]

Porter, C.

Prasad, S.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Prather, D. W.

J. N. Mait, C. Harrity, R. D. Martin, C. A. Schuetz, S. Shi, and D. W. Prather, “Minimum bias image processing with a distributed-aperture millimeter-wave imager,” Appl. Opt. 56, A52–A61 (2017).
[Crossref]

J. N. Mait, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Millimeter wave imaging with engineered point spread functions,” Opt. Eng. 51, 091606 (2012).
[Crossref]

Prats-Iraola, P.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Psaltis, D.

Quirin, S.

Radon, J.

J. Radon, “On the determination of functions from their integral values along certain manifolds,” IEEE Trans. Med. Imaging 5, 170–176 (1986).
[Crossref]

J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten,” Berichteüber die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 69, 262–277 (1917).

Rahman, Z.-U.

F. O. Huck, C. L. Fales, and Z.-U. Rahman, “An information theory of visual communication,” Philos. Trans. R. Soc. London A 354, 2193–2248 (1996).
[Crossref]

Rajan, D.

Ramchandran, K.

Ramsden, D.

P. Durrant, M. Dallimore, I. Jupp, and D. Ramsden, “The application of pinhole and coded aperture imaging in the nuclear environment,” Nucl. Instrum. Methods Phys. Res. A 422, 667–671 (1999).
[Crossref]

Rangarajan, P.

Raskar, R.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25, 795–804 (2006).
[Crossref]

R. Raskar, “Computational photography,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics, Technical Digest (2009), paper CTuA1.

G. Leifman, T. Swedish, K. Roesch, and R. Raskar, “Leveraging the crowd for annotation of retinal images,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015), pp. 7736–7739.

Reichanadter, J.

Rhodes, W. T.

Richardson, W. H.

Robinson, I. K.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref]

Robinson, M. D.

Roesch, K.

G. Leifman, T. Swedish, K. Roesch, and R. Raskar, “Leveraging the crowd for annotation of retinal images,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015), pp. 7736–7739.

Rolfo, D.

G. A. Farulla, M. Indaco, D. Rolfo, L. O. Russo, and P. Trotta, “Evaluation of image deblurring algorithms for real-time applications,” in 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (2014).

Romberg, J. K.

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).
[Crossref]

Rosen, J.

Rushforth, C. K.

Russo, L. O.

G. A. Farulla, M. Indaco, D. Rolfo, L. O. Russo, and P. Trotta, “Evaluation of image deblurring algorithms for real-time applications,” in 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (2014).

Saito, H.

Saleh, B. E. A.

K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013).
[Crossref]

Samms, R. W.

Sand, P.

A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
[Crossref]

Santarsiero, M.

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

Santos, J. M.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

Sayre, D.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Schechner, Y. Y.

Schnars, U.

Schuetz, C. A.

J. N. Mait, C. Harrity, R. D. Martin, C. A. Schuetz, S. Shi, and D. W. Prather, “Minimum bias image processing with a distributed-aperture millimeter-wave imager,” Appl. Opt. 56, A52–A61 (2017).
[Crossref]

J. N. Mait, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Millimeter wave imaging with engineered point spread functions,” Opt. Eng. 51, 091606 (2012).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Schulz, T. J.

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

Scott, P. D.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[Crossref]

Sebelius, P.

Segev, M.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

Sencan, I.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Shanblatt, E.

Shankar, P.

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[Crossref]

Shapiro, J. H.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shaw, J. A.

Shechtman, Y.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Shi, S.

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Shin, H.

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

Simon, B. N.

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

Simon, R.

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

Simon, S.

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

Sinharoy, I.

Sitter, D. N.

Smith, D. K.

R. J. Marks and D. K. Smith, “Iterative coherent processor for bandlimited signal extrapolation,” Proc. SPIE 231, 106–111 (1980).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Smith, G. E.

W. S. Boyle and G. E. Smith, “Information storage devices,” U.S. patent3,858,232 (December31, 1974).

Solomon, J. E.

Somayaji, M.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Spiller, E.

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[Crossref]

Spreeuw, R. J. C.

R. J. C. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998).
[Crossref]

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

Stacy, K.

Stern, A.

Stiller, B.

Stork, D. G.

Streibl, N.

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
[Crossref]

N. Streibl, “Fundamental restrictions for 3-D light distributions,” Optik 66, 341–354 (1984).

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Sun, X.

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

Swedish, T.

G. Leifman, T. Swedish, K. Roesch, and R. Raskar, “Leveraging the crowd for annotation of retinal images,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015), pp. 7736–7739.

Takahashi, A.

Takbar, D.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Talvala, E.-V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

Tanida, J.

Tanksalvala, M.

Tao, T.

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).
[Crossref]

Taylor, M. G.

Testorf, M.

M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics: Fundamentals and Applications (McGraw-Hill, 2009).

Thompson, M. A.

M. A. Thompson, M. D. Lew, and W. Moerner, “Extending microscopic resolution with single-molecule imaging and active control,” Ann. Rev. Biophys. 41, 321–342 (2012).
[Crossref]

Tian, L.

Tompsett, M. F.

M. F. Tompsett, “Charge transfer imaging devices,” U.S. patent4,085,456 (April19, 1978).

Töppel, F.

Torgersen, T. C.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Trotta, P.

G. A. Farulla, M. Indaco, D. Rolfo, L. O. Russo, and P. Trotta, “Evaluation of image deblurring algorithms for real-time applications,” in 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (2014).

Tseng, D.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

Tukey, J. W.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).

Tumblin, J.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25, 795–804 (2006).
[Crossref]

Tyo, J. S.

Tzang, O.

O. Tzang, A. Agrawal, and R. Piestun, “Materials degrees of freedom for optical design,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper IW3E.3.

Upatnieks, J.

Vaish, V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

Vallebona, A.

A. Vallebona and V. Maragliano, “Radiography with great enlargement (microradiography) and a technical method for the radiographic dissociation of the shadow,” Radiology 17, 340–341 (1931).
[Crossref]

van der Gracht, J.

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

J. N. Mait, R. Athale, and J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Express 11, 2093–2101 (2003).
[Crossref]

M. P. Christensen, G. W. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gracht, and R. A. Athale, “Active-eyes: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging,” Appl. Opt. 41, 6093–6103 (2002).
[Crossref]

J. N. Mait, J. van der Gracht, and G. W. Euliss, “Design of a diffractive anti-aliasing filter using information density,” Proc. SPIE 4736, 107–115 (2002).
[Crossref]

G. W. Euliss and J. van der Gracht, “Information-theoretic analyses of a birefringent blur filter,” Appl. Opt. 40, 6492–6504 (2001).
[Crossref]

J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996).
[Crossref]

J. van der Gracht, E. R. Dowski, W. T. Cathey, and J. P. Bowen, “Aspheric optical elements for extended depth-of-field imaging,” Proc. SPIE 2537, 279–288 (1995).
[Crossref]

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

Van Dokkum, P. G.

P. G. Van Dokkum, R. Abraham, and A. Merritt, “First results from the dragonfly telephoto array: the apparent lack of a stellar halo in the massive spiral galaxy M101,” Astrophys. J. Lett. 782, L24 (2014).
[Crossref]

Veeraraghavan, A.

M. Gupta, O. S. Cossairt, and A. Veeraraghavan, “A framework for analysis of computational imaging systems: role of signal prior, sensor noise and multiplexing,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 1909–1921 (2014).
[Crossref]

Veldkamp, W.

W. Veldkamp, “Wireless focal planes ‘on the road to amacronic sensors’,” IEEE J. Quantum Electron. 29, 801–813 (1993).
[Crossref]

Vera, E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Vishnyakov, G. N.

T. V. Bulygin and G. N. Vishnyakov, “Spectrotomography: a new method of obtaining spectrograms of two-dimensional objects,” Proc. SPIE 1843, 315–322 (1992).
[Crossref]

Vivian, W.

L. Cutrona, W. Vivian, E. Leith, and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Military Electron. MIL-5, 127–131 (1961).
[Crossref]

Wach, H. B.

Wagadarikar, A. A.

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

Wagner, R. F.

Wakin, M. B.

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Waller, L.

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper CTu3B.2.

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

Watnik, A. T.

Wikner, D. A.

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

Wilburn, B.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

Wiley, C. A.

C. A. Wiley, “Pulsed Doppler radar methods and apparatus,” U.S. patent3,196,436 (July20, 1965).

Willett, R. M.

Willomitzer, F.

Wolf, E.

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

Wolff, L. B.

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).
[Crossref]

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[Crossref]

Wood, S. L.

Xiangli, B.

Xiao, X.

Xuan, R.

Yaglidere, O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

Yamada, K.

Yamaguchi, I.

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yang, J. C.

J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time distributed light field camera,” in Proceedings of the 13th Eurographics Workshop on Rendering (2002), pp. 77–86.

Yaroslavski, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Yasuma, F.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref]

Yatagai, T.

Younis, M.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Yu, J. W.

T.-H. Chao, J. W. Yu, L.-J. Cheng, and J. L. Lambert, “Acousto-optic tunable filter imaging spectrometer for NASA applications: breadboard demonstration,” Proc. SPIE 1347, 655–663 (1990).
[Crossref]

Yu, L.

Zachai, A.

Zalevsky, Z.

Zernike, F.

F. Zernike, “Das phasenkontrastverfahren bei der mikroskopischen beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).

Zerom, P.

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

Zhang, C.

Zhang, W.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Zhao, B.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Zhou, C.

C. Zhou and S. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20, 3322–3340 (2011).
[Crossref]

Zhu, L.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

ACM Trans. Graph. (3)

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[Crossref]

A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71 (2008).
[Crossref]

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25, 795–804 (2006).
[Crossref]

Adv. Opt. Photon. (1)

Am. J. Phys. (1)

W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[Crossref]

Ann. Rev. Biomed. Eng. (1)

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Ann. Rev. Biomed. Eng. 18, 77–102 (2016).
[Crossref]

Ann. Rev. Biophys. (1)

M. A. Thompson, M. D. Lew, and W. Moerner, “Extending microscopic resolution with single-molecule imaging and active control,” Ann. Rev. Biophys. 41, 321–342 (2012).
[Crossref]

Appl. Opt. (40)

R. J. Marks, “Gerchberg’s extrapolation algorithm in two dimensions,” Appl. Opt. 20, 1815–1820 (1981).
[Crossref]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[Crossref]

J. R. Leger and S. H. Lee, “Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions,” Appl. Opt. 21, 274–287 (1982).
[Crossref]

M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003).
[Crossref]

M. P. Christensen, G. W. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gracht, and R. A. Athale, “Active-eyes: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging,” Appl. Opt. 41, 6093–6103 (2002).
[Crossref]

M. P. Christensen, V. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager fields of view,” Appl. Opt. 45, 2884–2892 (2006).
[Crossref]

M. Somayaji, M. P. Christensen, E. Faramarzi, D. Rajan, J.-P. Laine, P. Sebelius, A. Zachai, M. Chaparala, G. Blasche, K. Baldwin, B. Ogunfemi, and D. Granquist-Fraser, “Prototype development and field-test results of an adaptive multiresolution PANOPTES imaging architecture,” Appl. Opt. 51, A48–A58 (2012).
[Crossref]

P. Rangarajan, I. Sinharoy, P. Milojkovic, and M. P. Christensen, “Active computational imaging for circumventing resolution limits at macroscopic scales,” Appl. Opt. 56, D84–D107 (2017).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[Crossref]

P. C. Deguzman and G. P. Nordin, “Stacked subwavelength gratings as circular polarization filters,” Appl. Opt. 40, 5731–5737 (2001).
[Crossref]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[Crossref]

J. E. Solomon, “Polarization imaging,” Appl. Opt. 20, 1537–1544 (1981).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[Crossref]

E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978).
[Crossref]

A. T. Watnik and P. S. Lebow, “Limits of bootstrapping in a weak-signal holographic conjugator,” Appl. Opt. 53, 3841–3847 (2014).
[Crossref]

A. T. Watnik and P. S. Lebow, “Weak-signal iterative holography,” Appl. Opt. 54, 2615–2619 (2015).
[Crossref]

M. E. Gehm and D. J. Brady, “Compressive sensing in the EO/IR,” Appl. Opt. 54, C14–C22 (2015).
[Crossref]

J. N. Mait, A. Mahalanobis, M. A. Neifeld, and R. A. Athale, “Compressive sensing focus issue: introduction,” Appl. Opt. 54, CS1–CS3 (2015).
[Crossref]

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

J. N. Mait, C. Harrity, R. D. Martin, C. A. Schuetz, S. Shi, and D. W. Prather, “Minimum bias image processing with a distributed-aperture millimeter-wave imager,” Appl. Opt. 56, A52–A61 (2017).
[Crossref]

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
[Crossref]

A. W. Lohmann and W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1141–1151 (1978).
[Crossref]

G. Kim, K. Isaacson, R. Palmer, and R. Menon, “Lensless photography with only an image sensor,” Appl. Opt. 56, 6450–6456 (2017).
[Crossref]

H. B. Wach, E. R. Dowski, and W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37, 5359–5367 (1998).
[Crossref]

D. G. Stork and M. D. Robinson, “Theoretical foundations for joint digital-optical analysis of electro-optical imaging systems,” Appl. Opt. 47, B64–B75 (2008).
[Crossref]

M. D. Robinson and D. G. Stork, “Joint digital-optical design of superresolution multiframe imaging systems,” Appl. Opt. 47, B11–B20 (2008).
[Crossref]

W.-C. Chou, M. A. Neifeld, and R. Xuan, “Information-based optical design for binary-valued imagery,” Appl. Opt. 39, 1731–1742 (2000).
[Crossref]

G. W. Euliss and J. van der Gracht, “Information-theoretic analyses of a birefringent blur filter,” Appl. Opt. 40, 6492–6504 (2001).
[Crossref]

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817–4826 (1995).
[Crossref]

F. Willomitzer, S. Ettl, C. Faber, and G. Häusler, “Single-shot three-dimensional sensing with improved data density,” Appl. Opt. 54, 408–417 (2015).
[Crossref]

S. Quirin and R. Piestun, “Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions,” Appl. Opt. 52, A367–A376 (2013).
[Crossref]

C. L. Fales, F. O. Huck, and R. W. Samms, “Imaging system design for improved information capacity,” Appl. Opt. 23, 872–888 (1984).
[Crossref]

B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
[Crossref]

S. Nakadate, T. Yatagai, and H. Saito, “Electronic speckle pattern interferometry using digital image processing techniques,” Appl. Opt. 19, 1879–1883 (1980).
[Crossref]

J. R. Fienup, “Phase retrieval algorithms: a personal tour,” Appl. Opt. 52, 45–56 (2013).
[Crossref]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[Crossref]

D. N. Sitter and W. T. Rhodes, “Three-dimensional imaging: a space invariant model for space variant systems,” Appl. Opt. 29, 3789–3794 (1990).
[Crossref]

Appl. Phys. Lett. (2)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[Crossref]

Appl. Spectrosc. (1)

Archiv für mikroskopische Anatomie (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv für mikroskopische Anatomie 9, 413–418 (1873).
[Crossref]

Astrophys. J. Lett. (1)

P. G. Van Dokkum, R. Abraham, and A. Merritt, “First results from the dragonfly telephoto array: the apparent lack of a stellar halo in the massive spiral galaxy M101,” Astrophys. J. Lett. 782, L24 (2014).
[Crossref]

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[Crossref]

Berichteüber die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse (1)

J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten,” Berichteüber die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 69, 262–277 (1917).

Biomed. Opt. Express (1)

ChemPhysChem (1)

T. G. Mayerhöfer, H. Mutschke, and J. Popp, “Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert law,” ChemPhysChem 17, 1948–1955 (2016).
[Crossref]

Commun. Pure Appl. Math. (1)

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).
[Crossref]

Compt. Rend. Acad. Sci. (1)

G. M. Lippmann, “La photographic intégrale,” Compt. Rend. Acad. Sci. 146, 446–451 (1908).

Comput. Graph. Forum (1)

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

Computer (1)

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[Crossref]

Contemp. Phys. (1)

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
[Crossref]

Earth Environ. Sci. Trans. R. Soc. Edinburgh (1)

J. C. Maxwell, “Experiments on colour, as perceived by the eye, with remarks on colour-blindness,” Earth Environ. Sci. Trans. R. Soc. Edinburgh 21, 275–298 (1857).

Found. Phys. (1)

R. J. C. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998).
[Crossref]

IEEE Geosci. Remote Sens. Mag. (1)

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Veldkamp, “Wireless focal planes ‘on the road to amacronic sensors’,” IEEE J. Quantum Electron. 29, 801–813 (1993).
[Crossref]

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[Crossref]

IEEE Signal Process. Mag. (5)

G. R. Arce, D. J. Brady, H. Arguello, L. Carin, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (1)

J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. van der Gracht, G. P. Behrmann, B. L. Good, and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag. 57, 1713–1719 (2009).
[Crossref]

IEEE Trans. Circuits Syst. (1)

A. Papoulis, “A new algorithm in spectral analysis and bandlimited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742 (1975).
[Crossref]

IEEE Trans. Comput. Imaging (1)

A. Parada-Mayorga and G. R. Arce, “Spectral super-resolution in colored coded aperture spectral imaging,” IEEE Trans. Comput. Imaging 2, 440–455 (2016).
[Crossref]

IEEE Trans. Image Process. (3)

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref]

O. S. Cossairt, M. Gupta, and S. K. Nayar, “When does computational imaging improve performance?” IEEE Trans. Image Process. 22, 447–458 (2013).
[Crossref]

C. Zhou and S. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20, 3322–3340 (2011).
[Crossref]

IEEE Trans. Inf. Theory (2)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[Crossref]

IEEE Trans. Med. Imaging (1)

J. Radon, “On the determination of functions from their integral values along certain manifolds,” IEEE Trans. Med. Imaging 5, 170–176 (1986).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

R. Accorsi, F. Gasparini, and R. C. Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

M. Gupta, O. S. Cossairt, and A. Veeraraghavan, “A framework for analysis of computational imaging systems: role of signal prior, sensor noise and multiplexing,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 1909–1921 (2014).
[Crossref]

Image Vision Comput. (2)

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[Crossref]

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).
[Crossref]

Infrared Imaging Syst. Technol. (1)

D. E. Marshall, “Focal plane array design for optimum system performance,” Infrared Imaging Syst. Technol. 226, 66–73 (1980).
[Crossref]

Int. Commission Opt. Newsletter (1)

G. Häulser and F. Willomitzer, “A stroll through 3D imaging and measurement,” Int. Commission Opt. Newsletter 104, 1–5 (2015).

IRE Trans. Inf. Theory (1)

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6, 386–400 (1960).
[Crossref]

IRE Trans. Military Electron. (1)

L. Cutrona, W. Vivian, E. Leith, and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Military Electron. MIL-5, 127–131 (1961).
[Crossref]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

J. Opt. Soc. Am. (9)

J. Opt. Soc. Am. A (16)

J. J. M. Braat and A. J. E. M. Janssen, “Derivation of various transfer functions of ideal or aberrated imaging systems from the three-dimensional transfer function,” J. Opt. Soc. Am. A 32, 1146–1159 (2015).
[Crossref]

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
[Crossref]

J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4, 118–123 (1987).
[Crossref]

F. O. Huck, N. Halyo, K. Stacy, R. W. Samms, and C. L. Fales, “Image gathering and processing: information and fidelity,” J. Opt. Soc. Am. A 2, 1644–1666 (1985).
[Crossref]

F. O. Huck, J. A. McCormick, S. K. Park, and C. L. Fales, “Image-gathering system design for information and fidelity,” J. Opt. Soc. Am. A 5, 285–299 (1988).
[Crossref]

H. H. Barrett, J. Denny, R. F. Wagner, and K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
[Crossref]

H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. A 28, 2400–2413 (2011).
[Crossref]

C. V. Correa, H. Arguello, and G. R. Arce, “Snapshot colored compressive spectral imager,” J. Opt. Soc. Am. A 32, 1754–1763 (2015).
[Crossref]

E. Y. Lam and J. W. Goodman, “Iterative statistical approach to blind image deconvolution,” J. Opt. Soc. Am. A 17, 1177–1184 (2000).
[Crossref]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, C. Ferreira, and Z. Zalevsky, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
[Crossref]

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28, 2540–2553 (2011).
[Crossref]

W. T. Cathey, B. R. Frieden, W. T. Rhodes, and C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am. A 1, 241–250 (1984).
[Crossref]

R. M. Matic and J. W. Goodman, “Optimal pupil screen design for the estimation of partially coherent images,” J. Opt. Soc. Am. A 4, 2213–2227 (1987).
[Crossref]

R. M. Matic and J. W. Goodman, “Comparison of optical predetection processing and postdetection linear processing for partially coherent image estimation,” J. Opt. Soc. Am. A 6, 213–228 (1989).
[Crossref]

R. M. Matic and J. W. Goodman, “Optical preprocessing for increased system throughput,” J. Opt. Soc. Am. A 6, 428–440 (1989).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[Crossref]

J. Opt. Soc. Korea (1)

Lab Chip (1)

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[Crossref]

London Edinb. Dublin Philos. Mag. J. Sci. (3)

A. A. Michelson, “Visibility of interference-fringes in the focus of a telescope,” London Edinb. Dublin Philos. Mag. J. Sci. 31(190), 256–259 (1891).
[Crossref]

Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” London Edinb. Dublin Philos. Mag. J. Sci. 8, 261–274 (1879).
[Crossref]

Lord Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London Edinb. Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]

Math. Comput. (1)

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).

Nat. Methods (1)

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Nat. Photonics (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013).
[Crossref]

Nature (4)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242, 190–191 (1973).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

P. Durrant, M. Dallimore, I. Jupp, and D. Ramsden, “The application of pinhole and coded aperture imaging in the nuclear environment,” Nucl. Instrum. Methods Phys. Res. A 422, 667–671 (1999).
[Crossref]

Opt. Acta (2)

W. Lukosz and M. Marchand, “Optischen abbildung unter Überschreitung der beugungsbedingten auflösungsgrenze,” Opt. Acta 10, 241–255 (1963).
[Crossref]

R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).
[Crossref]

Opt. Eng. (5)

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
[Crossref]

J. R. Leger and S. H. Lee, “Coherent optical implementation of generalized two-dimensional transforms,” Opt. Eng. 18, 518–523 (1979).
[Crossref]

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[Crossref]

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[Crossref]

J. N. Mait, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Millimeter wave imaging with engineered point spread functions,” Opt. Eng. 51, 091606 (2012).
[Crossref]

Opt. Express (9)

K. S. Kubala, E. R. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102–2108 (2003).
[Crossref]

J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye principle,” Opt. Express 11, 3605–3611 (2003).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
[Crossref]

J. N. Mait, R. Athale, and J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Express 11, 2093–2101 (2003).
[Crossref]

J. R. Fienup, “Lensless coherent imaging by phase retrieval with an illumination pattern constraint,” Opt. Express 14, 498–508 (2006).
[Crossref]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref]

F. Willomitzer and G. Häusler, “Single-shot 3D motion picture camera with a dense point cloud,” Opt. Express 25, 23451–23464 (2017).
[Crossref]

V. Gruev, J. V. der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010).
[Crossref]

R. Karl, C. Bevis, R. Lopez-Rios, J. Reichanadter, D. Gardner, C. Porter, E. Shanblatt, M. Tanksalvala, G. F. Mancini, M. Murnane, H. Kapteyn, and D. Adams, “Spatial, spectral, and polarization multiplexed ptychography,” Opt. Express 23, 30250–30258 (2015).
[Crossref]

Opt. Lett. (10)

P. S. Lebow, A. T. Watnik, and J. R. Lindle, “Gated holographic imaging for structured illumination through obscurations,” Opt. Lett. 42, 2543–2546 (2017).
[Crossref]

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32, 481–483 (2007).
[Crossref]

A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
[Crossref]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[Crossref]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
[Crossref]

T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
[Crossref]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
[Crossref]

J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).
[Crossref]

M. A. Neifeld, “Information, resolution, and space-bandwidth product,” Opt. Lett. 23, 1477–1479 (1998).
[Crossref]

J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996).
[Crossref]

Opt. Photon. News (2)

J. N. Mait, “A history of imaging: revisiting the past to chart the future,” Opt. Photon. News 17(2), 22–27 (2006).
[Crossref]

R. Athale, D. M. Healy, D. J. Brady, and M. A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32–37 (2008).
[Crossref]

Optica (1)

Optik (1)

N. Streibl, “Fundamental restrictions for 3-D light distributions,” Optik 66, 341–354 (1984).

Philos. Trans. R. Soc. London A (3)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
[Crossref]

F. O. Huck, C. L. Fales, and Z.-U. Rahman, “An information theory of visual communication,” Philos. Trans. R. Soc. London A 354, 2193–2248 (1996).
[Crossref]

P. Fellgett and E. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Phys. Rev. A (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Phys. Rev. B (1)

P. Mansfield and P. K. Grannell, “Diffraction and microscopy in solids and liquids by NMR,” Phys. Rev. B 12, 3618–3634 (1975).
[Crossref]

Phys. Rev. Lett. (3)

B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Phys. Zeitschr. (1)

F. Zernike, “Das phasenkontrastverfahren bei der mikroskopischen beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).

Proc. Natl. Acad. Sci. USA (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Proc. SPIE (12)

A. T. Watnik and P. S. Lebow, “Dynamic holography for extended object beam shaping,” Proc. SPIE 8843, 88430E (2013).
[Crossref]

R. J. Marks and D. K. Smith, “Iterative coherent processor for bandlimited signal extrapolation,” Proc. SPIE 231, 106–111 (1980).
[Crossref]

R. W. Boyd, K. W. C. Chan, A. Jha, M. Malik, C. O’Sullivan, H. Shin, and P. Zerom, “Quantum imaging: enhanced image formation using quantum states of light,” Proc. SPIE 7342, 73420B (2009).
[Crossref]

T.-H. Chao, J. W. Yu, L.-J. Cheng, and J. L. Lambert, “Acousto-optic tunable filter imaging spectrometer for NASA applications: breadboard demonstration,” Proc. SPIE 1347, 655–663 (1990).
[Crossref]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

T. V. Bulygin and G. N. Vishnyakov, “Spectrotomography: a new method of obtaining spectrograms of two-dimensional objects,” Proc. SPIE 1843, 315–322 (1992).
[Crossref]

S. K. Park and R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” Proc. SPIE 1961, 2–13 (1993).
[Crossref]

J. N. Mait, J. van der Gracht, and G. W. Euliss, “Design of a diffractive anti-aliasing filter using information density,” Proc. SPIE 4736, 107–115 (2002).
[Crossref]

E. R. Dowski and K. S. Kubala, “Design and optimization of computational imaging systems,” Proc. SPIE 5299, 155–162 (2004).
[Crossref]

K. S. Kubala, E. R. Dowski, J. Kobus, and R. Brown, “Design and optimization of aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54–65 (2004).
[Crossref]

J. R. Fienup, “Phase retrieval for the Hubble Space Telescope using iterative propagation algorithms,” Proc. SPIE 1567, 327–332 (1991).
[Crossref]

J. van der Gracht, E. R. Dowski, W. T. Cathey, and J. P. Bowen, “Aspheric optical elements for extended depth-of-field imaging,” Proc. SPIE 2537, 279–288 (1995).
[Crossref]

Prog. Opt. (1)

D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
[Crossref]

Publ. Astron. Soc. Aust. (1)

J. G. Ables, “Fourier transform photography: a new method for x-ray astronomy,” Publ. Astron. Soc. Aust. 1, 172–173 (1968).
[Crossref]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Quantum Inf. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Radiat. Meas. (1)

M. J. Cieślak, K. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development: a review,” Radiat. Meas. 92, 59–71 (2016).
[Crossref]

Radiology (1)

A. Vallebona and V. Maragliano, “Radiography with great enlargement (microradiography) and a technical method for the radiographic dissociation of the shadow,” Radiology 17, 340–341 (1931).
[Crossref]

Scanning (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

Science (5)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

Sov. Phys. Tech. Phys. (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Spontaneous Gener. (1)

W. S. Parker, “An instrument for what? Digital computers, simulation and scientific practice,” Spontaneous Gener. 4, 39–44 (2010).

Other (42)

G. Leifman, T. Swedish, K. Roesch, and R. Raskar, “Leveraging the crowd for annotation of retinal images,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015), pp. 7736–7739.

M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics: Fundamentals and Applications (McGraw-Hill, 2009).

O. Tzang, A. Agrawal, and R. Piestun, “Materials degrees of freedom for optical design,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper IW3E.3.

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

K. Khare, Fourier Optics and Computational Imaging (Wiley, 2015).

IEEE, “IEEE Transactions on Computational Imaging,” http://ieeexplore.ieee.org/servlet/opac?punumber=6745852 .

The Royal Swedish Academy of Sciences, “The Nobel Prize in Chemistry 2014 Eric Betzig, Stefan W. Hell, William E. Moerner,” https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.html .

Light, “The light L16 camera,” https://light.co/ .

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CMA1.

D. B. Cavanaugh, M. Dombrowski, and B. Catanzaro, “Spatially corrected full-cubed hyperspectral imager,” U.S. patent7,433,042 (October7, 2008).

R. Horstmeyer, G. Euliss, and R. Athale, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (2009).

Thorlabs, “AO tutorial,” https://www.thorlabs.com/tutorials.cfm?tabID=96a6f477-757e-43fa-9772-5a83e1acf6c1 .

Wikipedia, “Coded aperture,” https://en.wikipedia.org/wiki/Coded_aperture .

C. A. Wiley, “Pulsed Doppler radar methods and apparatus,” U.S. patent3,196,436 (July20, 1965).

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (2005).

R. Ng, “Digital light field photography,” Ph.D. thesis (Stanford University, 2006).

J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time distributed light field camera,” in Proceedings of the 13th Eurographics Workshop on Rendering (2002), pp. 77–86.

M. W. Davidson, “Frits Zernike,” https://micro.magnet.fsu.edu/optics/timeline/people/zernike.html .

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (December19, 1961).

Wikipedia, “CT scan,” https://en.wikipedia.org/wiki/CT_scan .

F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics (SIAM, 2001).

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projection, 2nd ed. (Springer, 2009).

B. E. Bayer, “Color imaging array,” U.S. patent3,971,065 (July20, 1976).

Wikipedia, “Bayer filter,” https://en.wikipedia.org/wiki/Bayer_filter .

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2003).

R. Raskar, “Computational photography,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics, Technical Digest (2009), paper CTuA1.

J. Schwartzman, “Advanced imaging used in cinematography,” https://www.osa.org/en-us/media_library/plenary_keynote_sessions/ .

Intel, “The story of the Intel 4004—Intel’s first microprocessor: its invention, introduction, and lasting influence,” https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html .

R. A. Athale, G. W. Euliss, and J. N. Mait, “Computation imaging: old wine in new bottles?” in Frontiers in Optics (Optical Society of America, 2006), paper FWH2.

P.-M. Duffieux, L’intégrale de fourier et ses applications à l’optique (1946). Privately published by Oberthur in Rennes.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

W. S. Boyle and G. E. Smith, “Information storage devices,” U.S. patent3,858,232 (December31, 1974).

M. F. Tompsett, “Charge transfer imaging devices,” U.S. patent4,085,456 (April19, 1978).

J. N. Mait, U.S. Army Workshop on Integrated Imaging, Research Triangle Park, December17, 1999.

OSA Topical Meeting on Integrated Image Gathering and Processing, Albuquerque, New Mexico, Optical Society of America, 2001.

H. Andrews and B. Hunt, Digital Image Restoration (Prentice-Hall, 1977).

G. A. Farulla, M. Indaco, D. Rolfo, L. O. Russo, and P. Trotta, “Evaluation of image deblurring algorithms for real-time applications,” in 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (2014).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

H. Bartelt, S. K. Case, and R. Hauck, “Incoherent-optical processing,” in Applications of Optical Fourier Transforms, H. Stark, ed. (Academic, 1982), pp. 499–536.

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP) (Optical Society of America, 2017), paper CTu3B.2.

B. R. Frieden, Science from Fisher Information: a Unification (Cambridge University, 2004).

A. W. Lohmann, “The space–bandwidth product, applied to spatial filtering and holography,” (IBM San Jose Research Laboratory, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (38)

Figure 1
Figure 1 Representation of an imager from the perspective of pre- and post-transduction processing.
Figure 2
Figure 2 Schematic representation of an imaging system with pre-transduction processing. A source illuminates an object, whose transmitted wavefront is transformed by propagation and optical processing via the pupil function P(u,v) prior to detection.
Figure 3
Figure 3 Optical response of an imaging system with a one-dimensional aperture in the pupil plane. (a) Pupil function for a single open aperture. (b) CSF. (c) Incoherent OTF. (d) Incoherent PSF. (e) Pupil function for two open apertures. (f)–(h) Corresponding CSF, OTF, and PSF, respectively.
Figure 4
Figure 4 Joint optical–digital design. Left column: image produced by conventionally designed optics and results after Wiener filtering. Right column: same as the left column except the optics were designed by incorporating Wiener filtering. Reprinted with permission from [60]. Copyright 2008 Optical Society of America.
Figure 5
Figure 5 Comparison of (a) brightfield versus (b) phase-contrast images. Original images recorded by Zernike. Reprinted with permission by M. W. Davidson, The Florida State University, and Molecular Expressions website [83]. Copyright 1995–2017.
Figure 6
Figure 6 Gabor hologram. (a) Recording geometry. (b) Reconstruction. Reprinted by permission from Macmillan Publishers Ltd.: D. Gabor, Nature 161, 777–778 (1948) [84]. Copyright 1948.
Figure 7
Figure 7 Off-axis hologram. (a) Options for recording an off-axis hologram. (b) Reconstruction. Reprinted with permission from [17]. Copyright 1964 Optical Society of America.
Figure 8
Figure 8 Phase retrieval algorithms. (a) Error-reduction algorithm. (b) Input–output algorithm. Reprinted with permission from [38]. Copyright 1978 Optical Society of America.
Figure 9
Figure 9 Results from phase retrieval algorithm. (a) Test object. (b) Modulus of test object Fourier transform. (c) Initial estimate of object in one test. (d)–(f) Reconstruction results–number of iterations: (d) 20, (e) 230, (f) 600; (g) initial estimate of object in a second test. (h)–(i) Reconstruction results–number of iterations: (h) 2, (i) 215. Reprinted with permission from [38]. Copyright 1978 Optical Society of America.
Figure 10
Figure 10 Coincidence imaging. (a) Optical system for coincidence imaging. PDC is a parametric down converter that produces photon pairs. Reprinted with permission from Boyd et al., Proc. SPIE 7342, 73420B (2009) [97]. Copyright 2009. (b) First image produced via coincidence imaging. Figure 2 reprinted with permission from Pittman et al., Phys. Rev. A 52, R3429–R3432 (1995) [96]. Copyright 1995 American Physical Society. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.52.R3429.
Figure 11
Figure 11 Computed tomography. (a) Geometry for recording x-ray data used to generate CT images. (b) Representative CT image with cross-sectional slices and three-dimensional representation. Reprinted with permission from Wikipedia [122] Wikimedia Commons under the Creative Commons Attribution-Share Alike 3.0 license.
Figure 12
Figure 12 Representation of a Bayer filter for electronic color detection. Reprinted with permission from Wikipedia [128] Wikimedia Commons under the Creative Commons Attribution-Share Alike 3.0 license.
Figure 13
Figure 13 Traditional approaches to filling a spatial-spectral cube. Reprinted with permission from [31]. Copyright 1995 Optical Society of America.
Figure 14
Figure 14 CTIS principle and results. (a) Non-orthogonal projections of the spatial–spectral cube produced by the multiple diffracted orders. (b) Measurements and (c) spectral slices from a reconstructed spatial–spectral cube. Reprinted with permission from [31]. Copyright 1995 Optical Society of America.
Figure 15
Figure 15 Spatial–spectral imaging using spectral coding in combination with a dispersive element. (a) Schematic representation of operation. (b) Spectral bands used in SCCSI experiments. λ0=448  nm, λ1=466  nm, λ2=487  nm, λ3=516  nm, λ4=550  nm, λ5=600  nm, λ6=663  nm. Reprinted with permission from [137]. Copyright 2015 Optical Society of America.
Figure 16
Figure 16 Experimental results from SCCSI. (a) Laboratory implementation. (b) Panchromatic image of scene used in experiments. (c) Experimentally recovered spectral bands from SCCSI measurements using filters 1–4 in Fig. 15(b). Reprinted with permission from [137]. Copyright 2015 Optical Society of America.
Figure 17
Figure 17 Magnitude of the OTF with different amounts of defocus: (a) standard optical system with ψ=0 (solid curve), ψ=15 (dashed curve), and ψ=30 (dashed–dotted curve); (b) cubic phase element with α=90 and ψ=0, 15, and 30. Reprinted with permission from [28]. Copyright 1995 Optical Society of America.
Figure 18
Figure 18 Experimental results comparing conventional imaging to cubic phase extended DOF. Images of two different object planes using (a) conventional imaging, (b) imaging with a cubic phase element and no processing, and (c) imaging with a cubic phase element and post-detection processing. Reprinted with permission from [30]. Copyright 1996 Optical Society of America.
Figure 19
Figure 19 Structured illumination. Reprinted with permission from Häulser and Willomitzer, Int. Commission Opt. Newsletter 104, 1–5 (2015) [141].
Figure 20
Figure 20 Double-helix PSF compared to the conventional PSF of a circular aperture as a function of misfocus. Reprinted with permission from [145]. Copyright 2006 Optical Society of America.
Figure 21
Figure 21 Representation of stereoimaging.
Figure 22
Figure 22 Integral imaging. (a) Schematic representation of measurement. Reprinted with permission from [151]. Copyright 2013 Optical Society of America. (b) Original object. (c)–(e) Digital reconstructions from different angular perspectives. Figures (b)–(e) reprinted with permission from [149]. Copyright 2001 Optical Society of America.
Figure 23
Figure 23 Light-field imaging. (a) Imaging optics. (b) Detail of imaging optics using a microlens array. (c) Computational refocusing using light-field data. Figures reprinted by permission from Ng et al., “Light field photography with a hand-held plenoptic camera” (2005) [152] and R. Ng, “Digital light field photography” (2006) [153].
Figure 24
Figure 24 Architectures for polarization imaging. (a) Spatial multiplexing. Reprinted with permission from [157]. Copyright 1981 Optical Society of America. (b) Temporal multiplexing. Reprinted from Image Vision Comput. 15, L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” 81–93. Copyright 1997, with permission from Elsevier [165].
Figure 25
Figure 25 Polarization imaging of trucks in foliage. (a) Panchromatic visible image. (b) Long wave IR image. (c) Polarization image of (b). Reprinted with permission from [168]. Copyright 2006 Optical Society of America.
Figure 26
Figure 26 Illustration of synthetic aperture radar on a platform moving in the direction of v. The initial range is given by ro, and the range after time t is r(t). The beamwidth of the radar is Θa. © 2013 IEEE. Reprinted with permission from Moreira et al., IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013) [171].
Figure 27
Figure 27 Example of a hexagonally uniform redundant array coded aperture. Light from different points in the field and incident on aperture cast spatially shifted projections of the aperture onto the focal plane. Reprinted with permission from Wikipedia [174] Wikimedia Commons under the Creative Commons Attribution-Share Alike 3.0 license.
Figure 28
Figure 28 Comparison of images produced using (A) total internal reflection fluorescence microscopy and (B) photo-activated localization microscopy. (C) Close-up of the large boxed region in (B) demonstrates molecular localization at approximately 10 nm. (D) Close-up of the small boxed region in (B). From Betzig et al., Science 313, 1642–1645 (2006) [184]. Reprinted with permission from AAAS.
Figure 29
Figure 29 FPM image reconstruction. Step 1: Initialize a high-resolution image. Step 2: Generate a low-resolution image by filtering the high-resolution estimate using the Fourier response for the first illumination pattern. Step 3: Replace the amplitude of the low-resolution image using the intensity measurement from the corresponding pattern and update the corresponding region of Fourier space. Step 4: Repeat Steps 2 and 3 using measurements from all patterns. Step 5: Repeat Steps 2–4 to refine the estimate of the high-resolution image. Reprinted by permission from Macmillan Publishers Ltd.: Zheng et al., Nat. Photonics 7, 739–745 (2013) [186]. Copyright 2013.
Figure 30
Figure 30 Comparison between (a) short and (b) long continuous exposures, (c) an exposure code based on MURA, and (d) a custom code, where the exposure patterns are shown above each image. (d)–(h) Reconstructions using a least-square estimation method. (i) Experimental setup used to acquire the images in (a)–(d). (j) A reconstructed image from the raw image in (b) using the Richardson–Lucy algorithm. (k) A stationary image of the same scene in (a)–(d). A zoomed-in region of (f) on the top, (g) in the middle, and (h) on the bottom. Reprinted with permission from Raskar et al., ACM Trans. Graph. 25, 795–804 [193]. Copyright 2006 Association for Computing Machinery, Inc.
Figure 31
Figure 31 Lensless imaging. A sample placed near the surface of a detector array is illuminated from the opposite side. If the illumination is coherent, digital holography techniques can be used to recover sample amplitude and phase. Reproduced with permission from Ozcan and McLeod, Ann. Rev. Biomed. Eng. 18, 77–102 (2016) [195]. Copyright Annual Reviews, http://www.annualreviews.org.
Figure 32
Figure 32 Schematic of TOMBO. A microlens array is positioned near the surface of a detector array using a separation layer to insure the scene is imaged onto the detector. The separation layer also provides shielding to prevent crosstalk between unit cells. Reprinted with permission from [196]. Copyright 2001 Optical Society of America.
Figure 33
Figure 33 Schematic comparison of (a) a conventional imaging system and (b) a feature-specific imaging system. Reprinted with permission from [207]. Copyright 2003 Optical Society of America.
Figure 34
Figure 34 Relative feature fidelity, Eta=MSEM/MSEc, as a function of the number of features. Features simulated include KLT, ICA, Hadamard, Haar wavelets, and DAUB4. The plots in (a) assume additive white Gaussian noise (AWGN) for N=64. (b) Simulates results for KL features for N=36, 49, 64, and 81. (c), (d) Same results as (a) for shot noise (c) and quantization noise (d). Reprinted with permission from [207]. Copyright 2003 Optical Society of America.
Figure 35
Figure 35 Single-pixel camera. (a) Experimental setup. The object is imaged by Lens 1 onto the DMD displaying a function ϕm. Their product is imaged by Lens 2 onto an integrating photodetector. (b) Conventionally imaged 256×256 object. (c) Image reconstructed using 1300 random measurements. © 2008 IEEE. Reprinted with permission from Duarte et al., IEEE Signal Process. Mag. 25(2), 83–91 (2008) [210].
Figure 36
Figure 36 Plane wave incident received by a Shack–Hartmann sensor is shown on the left. In this case, the microlenses form spots on the detector array in a uniform grid. When the wavefront contains aberrations, the spots will be displaced, as illustrated on the right, corresponding to the shape of the wavefront. Reprinted with permission from Thorlabs [213].
Figure 37
Figure 37 (a) Unaberrated wavefront remains unaberrated and (b) an aberrated wavefront remains aberrated after reflection from a flat mirror. (c) A deformable mirror is able to correct an aberrated wavefront. The bottom row illustrates two different MEMS-based approaches to implementing a deformable mirror. Reprinted with permission from Thorlabs [213].
Figure 38
Figure 38 Adaptive lidar system. Reprinted with permission by Watnik and Lebow, Proc. SPIE 8843, 88430E (2013) [217]. Copyright 2013.

Equations (71)

Equations on this page are rendered with MathJax. Learn more.

o˜(x,y;ν)=o(x,y;ν)s˜(x,y;ν),
i˜(x,y;ν)=o˜(x,y;ν)**p(x,y;ν),=o˜(x,y;ν)p(xx,yy;ν)dxdy,
p(x,y;ν)=F1[P(u,v;ν)].
i˜(x,y;t)=[o˜(x,y;ν)**p(x,y;ν)]exp(j2πνt)dν.
i(x,y)=κ0τ|i˜(x,y;t)|2dt,=κ0τ[o˜(x1,y1;ν1)p(xx1,yy1;ν1)R(ν1)exp(j2πν1t)dx1dy1dν1]×[o˜*(x2,y2;ν2)p*(xx2,yy2;ν2)R(ν2)exp(j2πν2t)dx2dy2dν2]dt,
i(x,y)=κτR2[Γ(x1,y1;x2,y2)o(x1,y1)p(xx1,yy1)×o*(x2,y2)p*(xx2,yy2)]dx1dy1dx2dy2,
Γ(x1,y1;x2,y2)=1τ0τs(x1,y1;t)s*(x2,y2;t)dt,
Γ(x1,y1;x2,y2)=I0,
icoh(x,y)=κτR2I0|o(x,y)**p(x,y)|2.
Γ(x1,y1;x2,y2)=I0δ(x1x2,y1y2),
iinc(x,y)=κτR2I0|o(x,y)|2**|p(x,y)|2.
H(u,v)=P(u,v)P(u,v),=P(u,v)P*(u+u,v+v)dudv.
id(x,y)=m=Q[i(xm,ym)]δ(xxm,yym),
m=δ(xxm,yym)=k==δ(xkΔx,yΔy),
Im=Q[i(xm,ym)],
Icoh=|PO|2,
Iinc=|P|2|O|2,=H|O|2,
M=I+n,
I=T[M+n]+nT,=T[M]+n,
M=H|O|2+n,
I=T[H|O|2+n].
T=H1.
T=(|H|2+ϕ^n)1H,
Z=TH.
f#=fD.
S=(WdDλf)2.
Cp=Bwlog2(1+SNR).
Δθ^21F(θ),
F(θ)=E[(θlogf(X;θ))2],=(θlogf(x;θ))2f(x;θ)dx,
o(x,y)=exp[jθs(x,y)],1+[jθs(x,y)].
i(x,y)|j+[jθs(x,y)]|2,1+2θs(x,y).
r(x,y;t)=exp[j2πνt]exp[jθ0(x,y)],
s(x,y;t)=A(x,y)exp[j2πνt]exp[jθs(x,y)],
i˜(x,y;t)=r(x,y;t)+s(x,y;t).
h(x,y)1T0T|r(x,y;t)+s(x,y;t)|2dt,=1+A2(x,y)+2A(x,y)cos[θ0(x,y)θs(x,y)].
o(x,y;t)=r*(x,y;t)h(x,y),={[1+A2(x,y)]exp[jθ0(x,y)]+A(x,y)exp[jθs(x,y)]+A(x,y)exp[jθs(x,y)]exp[j2θ0(x,y)]}exp[j2πνt].
gk+l(x,y)={gk(x,y),(x,y)R0(x,y)R,
gk+l(x,y)={gk(x,y),(x,y)Rgk(x,y)βgk(x,y)(x,y)R,
i(x,y,λ)=|o(x,y,λ)|2**|p(xSx(λ),ySy(λ))|2,
i(x,y)=[|o(x,y,λ)|2**|p(xS(λ),y)|2]C(x,y)dλ.
i(x,y)=[|o(x,y,λ)|2**|p(xS(λ),y)|2]C(x,y,λ)dλ.
M=H|O|2+n,
H=PΓD,
P(x)={12exp(jαx3),for  |x|1,0,otherwise,
H(u,ψ){(π12|αu|)1/2exp(jαu34)exp(jψ2u3α),u0,1,u=0,
ψ=πL24λ(1f1do1di),
H(u){(π12|αu|)1/2exp(jαu34),u0,1,u=0.
S(x,y)=[S0(x,y)S1(x,y)S2(x,y)S3(x,y)]T,
S0(x,y)=Ex2(x,y,t)+Ey2(x,y,t),
S1(x,y)=Ex2(x,y,t)Ey2(x,y,t),
S2(x,y)=2Ex(x,y,t)Ey(x,y,t)cosγ,
S3(x,y)=2Ex(x,y,t)Ey(x,y,t)sinγ,
Sout(x,y)=M˜(x,y)Sin(x,y).
i(x,y,α)=(12)[S0(x,y)+S1(x,y)cos2α+S2(x,y)sin2α].
Lsa=λroDa,
δsa=λro2Lsa=Da2.
i(x,y)=|o(x,y)|2**P(x,y).
o(x,y)=i(x,y)**T(x,y),=|o(x,y)|2**[P(x,y)**T(x,y)].
Δλ2nsinθ,
p(x,y)Cexp[(xμx)22Δ2(yμy)22Δ2].
Δmin=ΔN=λ2Nnsinθ.
Gh=Ihexp(iϕh).
Gl=Ilexp(iϕl).
Gl=Imexp(iϕl).
Esample(x,y)=Aref(x,y)+Ascat(x,y)exp[jϕscat(x,y)],
Emeas(x,y)=|Esample(x,y)**h(x,y)|2.
SNRCINνPσnNν2MσnSNRFSI,
x=i=1Nαiψi,
y=ϕx=ϕΨα.
α^=argminα1such that  ϕΨα=y.
α^=argminα1such that  yϕΨα2<ε.

Metrics