Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Attitude measurement of ultraclose-range spacecraft based on improved YOLOv5s and adaptive Hough circle extraction

Not Accessible

Your library or personal account may give you access

Abstract

In order to fulfill the requirements for various operations in space, such as rendezvous, docking, and capturing, there is a pressing need to achieve ultraclose-range spacecraft pose measurement. This paper addresses the challenges of pose measurement under low-light conditions at ultraclose range by introducing a stereovision solution based on target detection and adaptive circle extraction. Initially, an improved target detection algorithm is employed to expedite feature object detection. Subsequently, an adaptive circle extraction algorithm is developed through analysis of camera imaging to surmount challenges related to feature extraction and potential feature loss in the space environment. This approach facilitates swift and accurate measurement of spacecraft at ultraclose range. The results showcase a 66.36% reduction in parameter count for the enhanced target detection algorithm compared with the prevalent YOLOv7_tiny algorithm. Additionally, the adaptive circle extraction algorithm demonstrates an 11.4% increase in cooperative target feature extraction precision compared with existing methods while maintaining requisite detection speed. Simulation experiments indicate that the real-time position measurement error for spacecraft at ultraclose range is less than 0.18 mm, and angle measurement error is less than 0.05°. This presents a viable visual solution for spacecraft pose measurement at ultraclose range in low-light environments.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Motion prediction of tumbling uncooperative spacecraft during proximity operations

Peng Li, Mao Wang, Zhao Zhang, Bing Zhang, and Yankun Wang
Appl. Opt. 63(8) 1952-1960 (2024)

RER-YOLO: improved method for surface defect detection of aluminum ingot alloy based on YOLOv5

Ting Chen, Chenguang Cai, Jing Zhang, Yu Dong, Ming Yang, Deguang Wang, Jing Yang, and Chengbin Liang
Opt. Express 32(6) 8763-8777 (2024)

Optimization-based non-cooperative spacecraft pose estimation using stereo cameras during proximity operations

Limin Zhang, Feng Zhu, Yingming Hao, and Wang Pan
Appl. Opt. 56(15) 4522-4531 (2017)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.