Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Denoising coherent Doppler lidar data based on a U-Net convolutional neural network

Not Accessible

Your library or personal account may give you access

Abstract

The coherent Doppler wind lidar (CDWL) has long been thought to be the most suitable technique for wind remote sensing in the atmospheric boundary layer (ABL) due to its compact size, robust performance, and low-cost properties. However, as the coherent lidar exploits the Mie scattering from aerosol particles, the signal intensity received by the lidar is highly affected by the concentration of aerosols. Unlike air molecules, the concentration of aerosol varies greatly with time and weather, and decreases dramatically with altitude. As a result, the performance of the coherent lidar fluctuates greatly with time, and the detection range is mostly confined within the planetary boundary layer. The original data collected by the lidar are first transformed into a spectrogram and then processed into radial wind velocities utilizing algorithms such as a spectral centroid. When the signal-to-noise ratio (SNR) is low, these classic algorithms fail to retrieve the wind speed stably. In this work, a radial wind velocity retrieving algorithm based on a trained convolutional neural network (CNN) U-Net is proposed for denoising and an accurate estimate of the Doppler shift in a low-SNR regime. The advantage of the CNN is first discussed qualitatively and then proved by means of a numerical simulation. Simulated spectrum data are used for U-Net training and testing, which show that the U-Net is not only more accurate than the spectral centroid but also achieves a further detection range. Finally, joint observation data from the lidar and radiosonde show excellent agreement, demonstrating that the U-Net-based retrieving algorithm has superior performance over the traditional spectral centroid method both in accuracy and detection range.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Coherent Doppler wind lidar with real-time wind processing and low signal-to-noise ratio reconstruction based on a convolutional neural network

Oliver Kliebisch, Hugo Uittenbosch, Johann Thurn, and Peter Mahnke
Opt. Express 30(4) 5540-5552 (2022)

Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis

Zhangjun Wang, Zhishen Liu, Liping Liu, Songhua Wu, Bingyi Liu, Zhigang Li, and Xinzhao Chu
Appl. Opt. 49(36) 6960-6978 (2010)

Coherent Doppler wind lidar signal denoising adopting variational mode decomposition based on honey badger algorithm

Yilun Zhou, Lang Li, Kaixin Wang, Xu Zhang, and Chunqing Gao
Opt. Express 30(14) 25774-25787 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request. Part of the code is available in Ref. [20].

20. Y. Song, “Supplementary code for paper,” GitHub, 2023, https://github.com/yiming-song/2023_research_unet.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.