Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

LIBS and Raman spectroscopy in tandem with machine learning for interrogating weatherization of lithium hydride

Not Accessible

Your library or personal account may give you access

Abstract

Lithium compounds such as lithium hydride (${\rm LiH}$) and anhydrous lithium hydroxide (${\rm LiOH}$) have various applications in industry but are highly reactive when exposed to moisture and ${{\rm CO}_2}$. These reactions create new molecular compounds that degrade applications. Environmental conditions such as temperature and moisture are examples of environmental conditions that are of interest for these reactions. To interrogate the effects of such weatherization, experiments were conducted in an environmental chamber (Plas-Labs 890-THC glove box) employing a pulsed laser and an echelle spectrograph in a novel single setup to conduct both Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) in tandem. These measurements in conjunction with data fusion and machine learning techniques are used to develop training and testing of environmental conditioning of Li compounds. Modeling of environmental characterizations involving lithium-based compounds enabled by the presented measurements and analytical techniques has significant implications on industrial technologies, such as batteries, and other nuclear applications.

Full Article  |  PDF Article
More Like This
Machine learning in analytical spectroscopy for nuclear diagnostics [Invited]

Ashwin P. Rao, Phillip R. Jenkins, Ryan E. Pinson, John D. Auxier II, Michael B. Shattan, and Anil K. Patnaik
Appl. Opt. 62(6) A83-A109 (2023)

Rapid quantitative analysis of calcium in infant formula powder assisted by long short-term memory with variable importance using laser-induced breakdown spectroscopy

Yu Ding, Linyu Yang, Wenjie Chen, Jing Chen, Xingqiang Zhao, Yong Luo, and Wangping Zhou
Appl. Opt. 62(9) 2188-2194 (2023)

Comparison of whole blood and serum samples of breast cancer based on laser-induced breakdown spectroscopy with machine learning

Bushra Sana Idrees, Geer Teng, Ayesha Israr, Huma Zaib, Yasir Jamil, Muhammad Bilal, Sajid Bashir, M. Nouman Khan, and Qianqian Wang
Biomed. Opt. Express 14(6) 2492-2509 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.