Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid optical turbulence models using machine-learning and local measurements

Not Accessible

Your library or personal account may give you access

Abstract

Accurate prediction of atmospheric optical turbulence in localized environments is essential for estimating the performance of free-space optical systems. Macro-meteorological models developed to predict turbulent effects in one environment may fail when applied in new environments. However, existing macro-meteorological models are expected to offer some predictive power. Building a new model from locally measured macro-meteorology and scintillometer readings can require significant time and resources, as well as a large number of observations. These challenges motivate the development of a machine-learning informed hybrid model framework. By combining a baseline macro-meteorological model with local observations, hybrid models were trained to improve upon the predictive power of each baseline model. Comparisons between the performance of the hybrid models, selected baseline macro-meteorological models, and machine-learning models trained only on local observations, highlight potential use cases for the hybrid model framework when local data are expensive to collect. Both the hybrid and data-only models were trained using the gradient boosted decision tree architecture with a variable number of in situ meteorological observations. The hybrid and data-only models were found to outperform three baseline macro-meteorological models, even for low numbers of observations, in some cases as little as one day. For the first baseline macro-meteorological model investigated, the hybrid model achieves an estimated 29% reduction in the mean absolute error using only one day-equivalent of observation, growing to 41% after only two days, and 68% after 180 days-equivalent training data. The data-only model generally showed similar, but slightly lower performance, as compared to the hybrid model. Notably, the hybrid model’s performance advantage over the data-only model dropped below 2% near the 24 days-equivalent observation mark and trended towards 0% thereafter. The number of days-equivalent training data required by both the hybrid model and the data-only model is potentially indicative of the seasonal variation in the local microclimate and its propagation environment.

Full Article  |  PDF Article
More Like This
Machine-learning informed macro-meteorological models for the near-maritime environment

Christopher Jellen, Miles Oakley, Charles Nelson, John Burkhardt, and Cody Brownell
Appl. Opt. 60(11) 2938-2951 (2021)

Machine learning informed predictor importance measures of environmental parameters in maritime optical turbulence

Christopher Jellen, John Burkhardt, Cody Brownell, and Charles Nelson
Appl. Opt. 59(21) 6379-6389 (2020)

Forecasting atmospheric turbulence conditions from prior environmental parameters using artificial neural networks

Mitchell G. Grose and Edward A. Watson
Appl. Opt. 62(13) 3370-3379 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.