Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multi-angle lensless ptychographic imaging via adaptive correction and the Nesterov method

Not Accessible

Your library or personal account may give you access

Abstract

Lensless systems based on ptychographic imaging can simultaneously achieve a large field of view and high resolution while having the advantages of small size, portability, and low cost compared to traditional lensed imaging. However, lensless imaging systems are susceptible to environmental noise and have a lower resolution of individual images than lens-based imaging systems, which means that they require a longer time to obtain a good result. Therefore, in this paper, to improve the convergence rate and robustness of noise in lensless ptychographic imaging, we propose an adaptive correction method, in which we add an adaptive error term and noise correction term in lensless ptychographic algorithms to reach convergence faster and create a better suppression effect on both Gaussian noise and Poisson noise. The Wirtinger flow and the Nesterov algorithms are used in our method to reduce computational complexity and improve the convergence rate. We applied the method to phase reconstruction for lensless imaging and demonstrated the effectiveness of the method by simulation and experiment. The method can be easily applied to other ptychographic iterative algorithms.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Nesterov-accelerated adaptive momentum estimation-based wavefront distortion correction algorithm

Hui Zhao, Jing An, Mengjie Yu, Diankai Lv, Kaida Kuang, and Tianqi Zhang
Appl. Opt. 60(24) 7177-7185 (2021)

Accelerated and high-quality Fourier ptychographic method using a double truncated Wirtinger criteria

Jian Liu, Yong Li, Weibo Wang, Jiubin Tan, and Chenguang Liu
Opt. Express 26(20) 26556-26565 (2018)

Ptychography-based high-throughput lensless on-chip microscopy via incremental proximal algorithms

Yue Huang, Shaowei Jiang, Ruihai Wang, Pengming Song, Jian Zhang, Guoan Zheng, Xiangyang Ji, and Yongbing Zhang
Opt. Express 29(23) 37892-37906 (2021)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.