Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Noise equalization scheme based on complex-valued ANN for multiple-eigenvalue modulated nonlinear frequency division multiplexing systems

Not Accessible

Your library or personal account may give you access

Abstract

In multiple-eigenvalue modulated nonlinear frequency division multiplexing (NFDM) systems, the noise degrades the accuracy of the nonlinear Fourier transform (NFT) algorithm, resulting in perturbations in the received eigenvalues and the corresponding discrete spectrum. Moreover, with the increase in the number of eigenvalues and the order of the modulation formats, the impact of noise on the performance of the system is even more. A noise equalization scheme based on complex-valued artificial neural network (c-ANN) for multiple-eigenvalue modulated NFDM systems is proposed. This sceheme inputs the eigenvalues perturbation and the impaired discrete spectrum corresponding to the eigenvalues into the c-ANN in complex form. The scheme constructs a complex-valued logic structure with both amplitude and phase information, overlapping reuse input features and, thereby, effectively reducing the effect of noise on the multiple-eigenvalue NFDM system. The effectiveness of the scheme is verified in long-haul seven-eigenvalue modulated single-polarization NFDM simulation systems with 1 GBaud 16APSK/16QAM/64APSK/64QAM modulation formats, and the results show that the scheme outperforms the NFT receiving without equalization by 1 to 2 orders of magnitude in terms of bit error rate (BER). Among them, the transmission distance of the 64APSK signal after equalization exceeds 800 km while the BER meets 7% forward error correction (FEC) threshold, which is 600 km longer than that of the disequilibrium case, and the spectral efficiency (SE) can reach 1.85 bit/s/Hz. Compared with other schemes, the proposed scheme has better equalization performance under the same complexity, and the complexity can be reduced by half or even under the same performance.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Robust neural network receiver for multiple-eigenvalue modulated nonlinear frequency division multiplexing system

Yue Wu, Lixia Xi, Xulun Zhang, Zibo Zheng, Jiacheng Wei, Shucheng Du, Wenbo Zhang, and Xiaoguang Zhang
Opt. Express 28(12) 18304-18316 (2020)

Joint equalization of frequency offset and phase noise using two-stage cascaded extended Kalman filter for discrete spectrum 16/64APSK NFDM systems

Hongbing Gao, Hengying Xu, Tingting Dong, Donghu Yao, Yining Zhang, Chenglin Bai, Lishan Yang, Xusheng Li, Zukai Sun, and Yaxuan Fan
Opt. Express 32(4) 6366-6381 (2024)

Improvement for a full-spectrum modulated nonlinear frequency division multiplexing transmission system

Jiacheng Wei, Lixia Xi, Xulun Zhang, Jiayun Deng, Ruofan Zhang, Shucheng Du, Wenbo Zhang, and Xiaoguang Zhang
Opt. Express 30(17) 31195-31208 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.