Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling of a ring-core trench-assisted few-mode BDFA for seven-mode signal gain equalization

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a ring-core trench-assisted few-mode bismuth-doped fiber amplifier (BDFA) is simulated on the basis of the three-energy level. The fiber is designed to support four modes of signal group transmission for practical considerations, including LP01, LP11, LP21, and LP31. The results suggest that (1) it is possible to obtain gain equalization of the three signal groups by using the LP21 mode pump independently, where the maximum difference in modal gain (MAX DMG) is about 0.9 dB, except for the LP31 mode signal; (2) by combining the LP01 and LP31 mode pumps, the average gain of the groups increases by 14%, and the MAX DMG decreases by nearly 60% (3.8 to 1.5 dB) compared to the LP01 pump alone; and (3) with the same combination of mode pumps, the ring-core BDFA (1.5 dB) achieves better gain equalization than the single-core BDFA (2.8 dB). The analysis is informative for the future development of a multimode BDFA.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Modal gain equalization of 18 modes using a single-trench ring-core EDFA

Ankita Gaur and Vipul Rastogi
J. Opt. Soc. Am. B 35(9) 2211-2216 (2018)

Gain equalization for a few-mode erbium-doped fiber amplifier supporting eight spatial modes

Jiao Gao, Fengping Yan, Guobin Ren, Hao Guo, Baoyuan Wang, Guangbo Li, Fuxi Zhu, HaoYu Tan, and Ting Feng
Appl. Opt. 62(35) 9274-9282 (2023)

Demonstration of a ring-core few-mode erbium-doped fiber for mode gain equalization based on layered doping

Qi Zhao, Li Pei, Jingjing Zheng, Jianshuai Wang, Yuheng Xie, Jing Li, and Tigang Ning
J. Opt. Soc. Am. B 39(7) 1972-1978 (2022)

Supplementary Material (1)

NameDescription
Supplement 1       Verify the applicability of three-level simulation to BDFA through experiments

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.