Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phase retrieval for objects in rain based on a combination of variational image decomposition and variational mode decomposition in FPP

Not Accessible

Your library or personal account may give you access

Abstract

As far as we know, there is no paper reported to retrieve the phase of an object in rain by the fringe projection profilometry (FPP) method. The fringe projection pattern taken in rain contains much rain noise, which makes it difficult to accurately retrieve the phase of the object. In this paper, we focus on the phase retrieval of the object in rain by the FPP method. We first decompose the original fringe projection pattern into a series of band-limited intrinsic mode functions by the two-dimensional variational mode decomposition (2D-VMD) method. Then we screen out fringe-associated modes adaptively based on mutual information and reconstruct the fringe projection pattern. Next, we decompose the reconstructed fringe projection pattern by the TGV-Hilbert-BM3D variational model to obtain the de-rained fringe component. Finally, we use the Fourier transform method, phase unwrapping method, and carrier-removal method to obtain the unwrapped phase. We test the proposed method on three fringe projection patterns taken in simulated rain weather, and we compare our proposed method with the phase-shifting method, windowed Fourier method, morphological operation-based bidimensional empirical mode decomposition method, 2D-VMD method, and the TGV-Hilbert-BM3D method. The experimental results demonstrate that, for the first time to our knowledge, our method can effectively retrieve the phase of an object in rain from a single fringe projection pattern.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Variational image decomposition model TGV-Hilbert-BM3D for phase retrieval in FPP and its application for an on-site wall surface bulge

Nian Hong, Chen Tang, Min Xu, Jianming Li, and Zhenkun Lei
Appl. Opt. 61(10) 2733-2742 (2022)

Absolute phase retrieval of shiny objects using fringe projection and deep learning with computer-graphics-based images

Kazumasa Ueda, Kanami Ikeda, Osanori Koyama, and Makoto Yamada
Appl. Opt. 61(10) 2750-2756 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.