Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diaphragm-free gas pressure sensor based on all-sapphire fiber Fabry–Perot interferometers

Not Accessible

Your library or personal account may give you access

Abstract

An all-sapphire fiber external Fabry–Perot interferometer (EFPI) sensor for measuring gas pressure is proposed and investigated. The sensor head is manufactured from a sapphire fiber ferrule and sapphire tube, and the same material can ensure the stability of the sensor structure at a high temperature. The refractive index of the gas is linearly related to the gas pressure. Therefore, the gas pressure can be measured by studying the optical cavity length of the EFPI. A multi-stage coupled multimode fiber is used to pick up the interference signal of the fiber EFPI. The pressure response of the sensor at different temperatures was measured in the experiment. The experimental results show that the sapphire fiber EFPI can measure 0–5 MPa gas pressure in the environment of 17–1400°C. The sensitivity of the sensor decreases with the increasing temperature, and the maximum sensitivity is 1.1673 µm/MPa (20°C). The sensor is compact and suitable for gas pressure measurement at a high temperature.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
All-sapphire fiber-optic sensor for the simultaneous measurement of ultra-high temperature and high pressure

Yutong Zhang, Yi Jiang, Shuiwang Yang, and Dayou Zhang
Opt. Express 32(8) 14826-14836 (2024)

Sapphire Fabry–Perot interferometer for high-temperature pressure sensing

Z. Wang, J. Chen, H. Wei, H. Liu, Z. Ma, N. Chen, Z. Chen, T. Wang, and F. Pang
Appl. Opt. 59(17) 5189-5196 (2020)

Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications

Wangwang Li, Ting Liang, Pinggang Jia, Cheng Lei, Yingping Hong, Yongwei Li, Zong Yao, Wenyi Liu, and Jijun Xiong
Appl. Opt. 58(7) 1662-1666 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.