Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Compact and low-loss TM-pass polarizer based on a hybrid plasmonic waveguide with a semiround arch Si core

Not Accessible

Your library or personal account may give you access

Abstract

A compact and low loss TM-pass polarizer based on a hybrid plasmonic waveguide (HPW) has been demonstrated. By introducing the hollow HPW with a semiround arch (SRA) Si core, the unwanted TE mode can be effectively cut off and the TM mode can pass through by hybrid plasmonic mode with excellent transmission characteristics. The hollow structure realizes lower index with $n = {1}$ due to the air region, and the SRA construction effectively suppresses the energy loss of the TM mode caused by the corner effect. Thus, TM modes pass through with negligible loss and exhibit the characteristic of strong mode limitation. By optimizing the width of metal, the width of the HPW, and the length of the tapered mode converter, an optimum performance with a high polarization extinction ratio of 67.87 dB and a low insert loss of 0.029 dB at the work ${\rm wavelength} = {1550}\;{\rm nm}$ is achieved. Detailed analysis also proves that the proposed polarizer has a compact size of only 7 µm and a great fabrication tolerance. This work offers a simple and effective scheme of polarization control on-chip.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Broadband and high extinction ratio hybrid plasmonic waveguide-based TE-pass polarizer using multimode interference

Shengbao Wu, Jinbiao Xiao, Ting Feng, and X. Steve Yao
J. Opt. Soc. Am. B 37(10) 2968-2975 (2020)

Data availability

Data undying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.