Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Longitudinal and transverse PAFs for an absorptive magneto-dielectric circular cylinder in light-sheets of arbitrary wavefronts and polarization

Not Accessible

Your library or personal account may give you access

Abstract

Based upon the expression of the heat source function in photophoresis, generalized mathematical expressions for the longitudinal (L) and transverse (T) photophoretic asymmetry factors (PAFs) for a light-absorptive magneto-dielectric circular cylinder of arbitrary relative permittivity and permeability, illuminated by an arbitrarily shaped polarized light-sheet, are derived and computed. The L- and T-PAFs are directly proportional to the L and T components of the photophoretic force vector, respectively, induced by light absorption inside the particle, and their sign predicts the behavior of the force (pulling/attractive or pushing/repulsive). The partial-wave series expansion method in cylindrical coordinates is used, and the obtained mathematical expressions for the L- and T-PAFs depend on the beam-shape coefficients and the internal coefficients of the cylinder. Numerical examples illustrate the theory for TE and TM polarized plane waves, and nonparaxial Airy light-sheets with particular emphasis on absorption inside the cylinder and varying the Airy light-sheet parameters. The generalized expressions presented here are applicable to any light-sheet of an arbitrary wavefront, and offer additional quantitative observables for the analysis of the photophoretic force in applications in electromagnetic scattering, optical light-sheet tweezers, particle manipulation, radiative transfer, and other research fields.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.