Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental validation of D parameter model for droplet sizing using off-axis lidar measurements

Not Accessible

Your library or personal account may give you access

Abstract

Information about the size distribution of liquid droplets in a fog can be retrieved by measuring the backscattering lidar depolarization parameter D in circular polarization. Using a polarimetric off-axis lidar, measurements at different backscattering angles are performed on fogs made of water droplets and of mineral oil. Estimation of the effective droplet size is obtained using constrained linear inversion. Mie theory is used to calculate the variation in depolarization parameters for different effective droplet sizes. The calculation is performed for various scattering angles. These calculations provide a kernel for the constrained linear inversion scheme. It is shown that the refractive index has an effect on the retrieved droplet sizes as well as the choice of scattering angles. These measurements confirm that the circular depolarization parameter measured near the backscattering angle can be modeled as a function of the forward-scattering diffraction peak. The results of the constrained linear inversion of measurements are consistent with in situ measurement of the droplet size distribution.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation

Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallée
Appl. Opt. 38(24) 5202-5211 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.