Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional thermal model of high-power semiconductor lasers

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, 3-D, steady-state, analytical thermal models of high-power single-emitter semiconductor lasers (SEs) and laser diode arrays (LDAs) are derived, considering the heat conduction in multi-layered laser structures. Heat flow in the laser chips for an epi-down bonded SE and LDA is described using this model, and it is observed that the laser chips contribute to 8% and 6% of total heat dissipation for the SE and LDA, respectively. The submount size requirement for this model is discussed by revealing the heat flow in the submount. Through finite element simulations, the solution accuracy for the lasers with non-ideal submounts is confirmed. Finally, the performance of our proposed analytical models is verified by finite element simulations and experimental measurements based on the wavelength shift method.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional thermal model of a high-power diode laser bar

Di-Hai Wu, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 57(33) 9868-9876 (2018)

Effect of submount thickness on near-field bowing of laser diode arrays

Hongyou Zhang, Tianqi Chen, Pu Zhang, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 57(28) 8407-8411 (2018)

Thermal hydraulic performance of a microchannel heat sink for cooling a high-power diode laser bar

Di-Hai Wu, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 58(8) 1966-1977 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.