Abstract

On-chip high-Q microcavities possess significant potential in terms of integration of optical microresonators into functional optoelectronic devices that could be used in various applications, including biosensors, photonic-integrated circuits, or quantum optics experiments. Yet, despite the convenience of fabricating wafer-scale integrated microresonators with moderate Q values using standard microfabrication techniques, surface-tension-induced microcavities (STIMs), which have atomic-level surface roughness enabling the observation of Q values larger than 106, could only be produced using individual thermal treatment of every single microresonator within the devised area. Here, we demonstrate a facile method for large-scale fabrication of silica STIMs of various morphologies. Q values exceeding 106 are readily obtained using this technique. This study represents a significant advancement toward fabrication of wafer-scale optoelectronic circuitries.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Q silica microdisk optical resonators with large wedge angles on a silicon chip

Guanyu Li, Pei Liu, Xiaoshun Jiang, Chao Yang, Jiyang Ma, Hongya Wu, and Min Xiao
Photon. Res. 3(5) 279-282 (2015)

Free ultra-high-Q microtoroid: a tool for designing photonic devices

Mani Hossein-Zadeh and Kerry J. Vahala
Opt. Express 15(1) 166-175 (2007)

Replica-molded high-Q polymer microresonators

Andrea L. Martin, Deniz K. Armani, Lan Yang, and Kerry J. Vahala
Opt. Lett. 29(6) 533-535 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription