Abstract

The main challenge in disk laser design is the realization of efficient heat removal from the pumped area by optimizing the heat spreader design and the water impingement cooling. This generally requires the calculation of the temperature distribution in the disk by numerically solving the heat conduction equation using finite element algorithms. We have developed a simple method to calculate disk temperature profiles that is based on analytically solving the heat conduction equation in Hankel transform space. This method can be applied to disks that are mounted on multi-layered, water-cooled heat spreaders, which may include glue or solder layers and dielectric coating layers. The temperature and heat fluxes at the interfaces of the layers are connected via a heat transfer matrix, which allows for straightforward incorporation of additional heat sink layers or an undoped cap into the model. This generalized model allows for the parametric optimization of the heat distribution in pumped solid-state laser and semiconductor laser disks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semi-analytical solution for the temperature profiles in solid-state laser disks mounted on heat spreaders

Norman Hodgson and Andrea Caprara
Appl. Opt. 55(19) 5110-5117 (2016)

Aberrations induced by anti-ASE cap on thin-disk active element

Aidas Aleknavičius, Martynas Gabalis, Andrejus Michailovas, and Valdas Girdauskas
Opt. Express 21(12) 14530-14538 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription